【題目】如圖1,拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在x軸的負(fù)半軸),與y軸交于點(diǎn)C. 拋物線的對(duì)稱軸交拋物線于點(diǎn)D,交x軸于點(diǎn)E,點(diǎn)P是線段DE上一動(dòng)點(diǎn)(點(diǎn)P不與DE兩端點(diǎn)重合),連接PC、PO.
(1) 求拋物線的解析式和對(duì)稱軸;
(2) 求∠DAO的度數(shù)和△PCO的面積;
(3) 在圖1中,連接PA,點(diǎn)Q 是PA 的中點(diǎn).過(guò)點(diǎn)P作PF⊥AD于點(diǎn)F,連接QE、QF、EF得到圖2.試探究: 是否存在點(diǎn)P,使得 ,若存在,請(qǐng)求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);;(2)45°;;(3)存在,
【解析】
(1)把C點(diǎn)坐標(biāo)代入解出解析式,再根據(jù)對(duì)稱軸即可解出.
(2)把A、D、E、C點(diǎn)坐標(biāo)求出后,因?yàn)?/span>AE=DE,且DE⊥AE,所以∠DAO=,P點(diǎn)y軸的距離等于OE,即可算出△POC的面積.
(3)設(shè)出PE=m,根據(jù)勾股定理用m表示出PA,根據(jù)直角三角形斜邊中線是斜邊的一半可以證明AQ=FQ=QE=QP,所以△AQF和△AQE都是等腰三角形,又因?yàn)?/span>∠DAO=,再根據(jù)角的關(guān)系可以證明△FEQ是等腰直角三角形,再根據(jù),解出m即可.可以通過(guò)圓的性質(zhì),來(lái)判斷△FEQ是等腰直角三角形,再根據(jù)建立等式算出m即可.
解: (1) 將C代入求得a=,
∴拋物線的解析式為;
由可求拋物線的對(duì)稱軸為直線
(2) 由拋物線可求一些點(diǎn)的坐標(biāo):
∴ AE=DE=3,又DE⊥AE
∴△ADE是等腰直角三角形 ∴∠DAO=45°
作PM⊥y軸于M,在對(duì)稱軸上的點(diǎn)P的橫坐標(biāo)為-1,∴PM=1,又OP=
∴△OPC的面積為
(3)解:存在點(diǎn)滿足題目條件.
解法一: 設(shè)點(diǎn)P的縱坐標(biāo)為m(0<m<3),則PE=m,
∵點(diǎn)Q是PA的中點(diǎn),∴QE、QF分別是Rt△PAE、Rt△PAF的公共斜邊PA上的中線
∴QE=QF=AQ=PQ=
∵QE=AQ,QF=AQ ∴∠EAQ=∠AEQ,∠FAQ=∠AFQ
∴∠EQP=2∠EAQ,∠FQP=2∠FAQ
∴∠EQF=2(∠EAQ + ∠FAQ ) =2∠DAO=90°
又∴QE=QF ∴△EFQ是等腰直角三角形
∴△EFQ的面積為
由得解得
∵0<m<3 ∴∴在拋物線對(duì)稱軸上的點(diǎn)P的坐標(biāo)為
解法二: 設(shè)點(diǎn)P的縱坐標(biāo)為m(0<m<3),則PE=m,
∵點(diǎn)Q是PA的中點(diǎn),∴QE、QF分別是Rt△PAE、Rt△PAF的公共斜邊PA上的中線
∴QE=QF=AQ=PQ=
∴四邊形PEAF內(nèi)接于半徑為QE的⊙Q,
∴∠EQF=2∠DAO=90°
又∴QE=QF ∴△EFQ是等腰直角三角形
∴△EFQ的面積為
由得解得
∵0<m<3 ∴∴在拋物線對(duì)稱軸上的點(diǎn)P的坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點(diǎn)D.過(guò)點(diǎn)D作EF⊥AC,垂足為E,且交AB的延長(zhǎng)線于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(2)已知AB=4,AE=3.求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長(zhǎng)線上,連接EA、EC.
(1)如圖1,若點(diǎn)P在線段AB的延長(zhǎng)線上,求證:EA=EC;
(2)若點(diǎn)P在線段AB上,如圖2,當(dāng)點(diǎn)P為AB的中點(diǎn)時(shí),判斷△ACE的形狀,并說(shuō)明理由;
(3)在(1)的條件下,將正方形ABCD固定,正方形BPEF繞點(diǎn)B旋轉(zhuǎn)一周,設(shè)AB=4,BP=a,若在旋轉(zhuǎn)過(guò)程中△ACE面積的最小值為4,請(qǐng)直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某倉(cāng)儲(chǔ)中心有一斜坡AB,其坡比為i=1∶2,頂部A處的高AC為4 m,B,C在同一水平面上.
(1)求斜坡AB的水平寬度BC;
(2)矩形DEFG為長(zhǎng)方形貨柜的側(cè)面圖,其中DE=2.5 m,EF=2 m.將貨柜沿斜坡向上運(yùn)送,當(dāng)BF=3.5 m時(shí),求點(diǎn)D離地面的高.(≈2.236,結(jié)果精確到0.1 m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以40m/s的速度將小球沿與地面30°角的方向擊出時(shí),小球的飛行路線是一段拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時(shí)間t(單位:s)之間的函數(shù)關(guān)系式為h=20t-(t≥0). 回答問(wèn)題:
(1)小球的飛行高度能否達(dá)到19.5m;
(2) 小球從最高點(diǎn)到落地需要多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)作不軸的垂線交直于點(diǎn)以原點(diǎn)為圓心,的長(zhǎng)為半徑斷弧交軸正半軸于點(diǎn);再過(guò)點(diǎn)作軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,以的長(zhǎng)為半徑畫弧交軸正半軸于點(diǎn);…按此作法進(jìn)行下去,則的長(zhǎng)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,使點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在邊上,點(diǎn)的對(duì)應(yīng)點(diǎn)為,連接.下列結(jié)論一定正確的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在初中數(shù)學(xué)學(xué)習(xí)階段,我們常常會(huì)利用一些變形技巧來(lái)簡(jiǎn)化式子,解答問(wèn)題.
材料一:在解決某些分式問(wèn)題時(shí),倒數(shù)法是常用的變形技巧之一,所謂倒數(shù)法,即把式子變成其倒數(shù)形式,從而運(yùn)用約分化簡(jiǎn),以達(dá)到計(jì)算目的.
例:已知:,求代數(shù)式的值.
解:∵,∴即
∴∴
材料二:在解決某些連等式問(wèn)題時(shí),通?梢砸?yún)?shù)“”,將連等式變成幾個(gè)值為的等式,這樣就可以通過(guò)適當(dāng)變形解決問(wèn)題.
例:若,且,求的值.
解:令則,,,∴
根據(jù)材料回答問(wèn)題:
(1)已知,求的值.
(2)已知,求的值.
(3)若,,,,且,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com