如圖,平面直角坐標系中有一直角梯形OMNH,點H的坐標為(-8,0),點N的坐標為(-6,-4).
(1)畫出直角梯形OMNH繞點O旋轉180°的圖形OABC,并寫出頂點A,B,C的坐標(點M的對應點為A,點N的對應點為B,點H的對應點為C);
(2)求出過A,B,C三點的拋物線的表達式;
(3)試設計一種平移使(2)中的拋物線經過四邊形ABCO的對角線交點;
(4)截取CE=OF=AG=m,且E,F(xiàn),G分別在線段CO,OA,AB上,四邊形BEFG是否存在鄰邊相等的情況?若存在,請直接寫出此時m的值,并指出相等的鄰邊;若不存在,說明理由.

【答案】分析:(1)由于直角梯形OMNH繞點O旋轉180°后得到圖形OABC,因此梯形OMNH和梯形OABC是中心對稱圖形,且對稱中心為原點O,所以點A、B、C與點M、N、H關于原點對稱,即可求出點A、B、C的坐標;
(2)已知了拋物線圖象上A、B、C三點的坐標,可利用待定系數(shù)法求出該拋物線的解析式;
(3)可先求出直線OB、AC的解析式,聯(lián)立兩條直線的解析式即可求得它們的交點坐標;若使(2)所得拋物線經過此交點,那么平移方法有很多種,以該拋物線頂點經過此交點為例,首先將拋物線的解析式化為頂點坐標式,即可得到其頂點坐標,然后分別求出這兩點橫、縱坐標的差,根據“上加下減,左加右減”的平移規(guī)律來確定平移方案即可;
(4)過B作BM⊥x軸于M,易求得MC、BM、BC的值,即可得到表示出EM的長,然后分別表示出BE2、EF2、GF2、BG2的值,由于不確定四邊形BEFG的哪兩條鄰邊相等,因此分:①BG=GF,②BE=BG,③BE=EF,④GF=EF;四種情況進行討論,根據各自的等量關系,列出不同的關于m的方程求出m的值.
解答:解:(1)利用中心對稱性質,畫出梯形OABC.
∵A,B,C三點與M,N,H分別關于點O中心對稱,
∴A(0,4),B(6,4),C(8,0);

(2)設過A,B,C三點的拋物線關系式為y=ax2+bx+c,
∵拋物線過點A(0,4),
∴c=4.則拋物線關系式為y=ax2+bx+4.
將B(6,4),C(8,0)兩點坐標代入關系式,得
解得
所求拋物線關系式為:;(2分)

(3)由得,它的頂點是(3,
又直線OB的解析式是y=x,直線AC的解析式是y=
兩直線的交點是();
-3=-=-;
所以,只要把拋物線向右平移,向下平移個單位就能使頂點過梯形ABCO的對角線交點;

(4)OA=4,OC=8,
∴AF=4-m,OE=8-m.
過B作BM⊥x軸于M,則:BM=OA=4,MC=OC-AB=2;
∴EM=m-2或2-m,
即ME2=(m-2)2;
在Rt△BEM中,BM=4,ME2=(m-2)2
根據勾股定理得:BE2=BM2+ME2=m2-4m+20;
同理:EF2=2m2-16m+64,GF2=2m2-8m+16,
而BG=6-m,
即BG2=m2-12m+36;則:
①GB=GF,則GB2=GF2,得:
m2-12m+36=2m2-8m+16,即m2+4m-20=0,
解得m=-2±2(負值舍去);
故當時,GB=GF,
②BE=BG,則BE2=BG2,得:
m2-4m+20=m2-12m+36,
解得m=2;
故當m=2時,BE=BG.
③BE=EF,則BE2=EF2
得:m2-4m+20=2m2-16m+64,
即m2-12m+44=0,
此方程無解,
故此種情況不成立.
④GF=EF,則GF2=EF2
得:2m2-8m+16=2m2-16m+64,
解得m=6,
此時BG=6-m=0,構不成四邊形BEFG,故此種情況不成立.
綜上所述,當時,GB=GF,當m=2時,BE=BG.
點評:此題考查了中心對稱圖形的性質、二次函數(shù)解析式的確定、函數(shù)圖象的平移、勾股定理的應用等知識.要注意的(4)題,由于四邊形的相等鄰邊沒有明確告知,需要分類討論,以免漏解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,平面直角坐標系中,O為直角三角形ABC的直角頂點,∠B=30°,銳角頂點A在雙曲線y=
1x
上運動,則B點在函數(shù)解析式
 
上運動.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,⊙P與x軸分別交于A、B兩點,點P的坐標為(3,-1),AB精英家教網=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,OB在x軸上,∠ABO=90°,點A的坐標為(1,2).將△AOB繞點A逆時針旋轉90°,則點O的對應點C的坐標為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:平面直角坐標系中,△ABC的三個頂點的坐標為A(a,0),B(b,0),C(0,c),且a,b,c滿足
a+2
+|b-2|+(c-b)2=0
.點D為線段OA上一動點,連接CD.
(1)判斷△ABC的形狀并說明理由;
(2)如圖,過點D作CD的垂線,過點B作BC的垂線,兩垂線交于點G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH
;
(3)如圖,若點D到CA、CO的距離相等,E為AO的中點,且EF∥CD交y軸于點F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在平面直角坐標系中,A點坐標為(8,0),B點坐標為(0,6)C是線段AB的中點.請問在y軸上是否存在一點P,使得以P、B、C為頂點的三角形與△AOB相似?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案