【題目】已知拋物線,其中是常數(shù),該拋物線的對稱軸為直線.
()求該拋物線的函數(shù)解析式.
()把該拋物線沿軸向上平移多少個單位后,得到的拋物線與軸只有一個公共點.
【答案】(1);(2)
【解析】試題分析:
(1)把拋物線的解析式整理為一般形式,由此可得到其對稱軸的表達(dá)式,結(jié)合對稱軸是直線即可解出“m”的值,從而可求得其解析式;
(2)設(shè)把該拋物線向上平移個單位長度后與軸只有一個公共點,由此可得新的解析式的表達(dá)式,再由“△=”即可求得的值.
試題解析:
(1)∵可化為: ,
∴該拋物線的對稱軸為直線: ,
又∵該拋物線的對稱軸為:直線,
∴,解得: ,
∴拋物線的解析式為: ;
()設(shè)原拋物線向上平移個單位后與軸只有1個公共點,則平移后拋物線解析式為:
,
∵它與軸只有一個公共點,
∴,解得: ,
即,將該拋物線向上平移個單位長度后,新拋物線與軸只有1個公共點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC為等邊三角形
(1)若D為△ABC外一點,滿足∠CDB=30,求證:
(2)若D為△ABC內(nèi)一點,DC=3,DB=4,DA=5,求∠CDB的度數(shù)
(3)若D為△ABC內(nèi)一點,DA=4,DB=,DC=則AB= (直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E 、F ,連結(jié)BD 、DP ,BD與CF相交于點H. 給出下列結(jié)論:①△BDE ∽△DPE;② ;③DP 2=PH ·PB; ④. 其中正確的是( ).
A. ①②③④ B. ①②④ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,調(diào)查方式選擇最合理的是
A. 為了解安徽省中學(xué)生的課外閱讀情況,選擇全面調(diào)查
B. 調(diào)查七年級某班學(xué)生打網(wǎng)絡(luò)游戲的情況,選擇抽樣調(diào)查
C. 為確保長征六號遙二火箭成功發(fā)射,應(yīng)對零部件進(jìn)行全面調(diào)查
D. 為了解一批袋裝食品是否含有防腐劑,選擇全面調(diào)查
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王剪了兩張直角三角形紙片,進(jìn)行了如下的操作:
操作一:如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,可求得△ACD的周長為 ;
(2)如果∠CAD:∠BAD=4:7,可求得∠B的度數(shù)為 ;
操作二:如圖2,小王拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,若AC=9cm,BC=12cm,請求出CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),公路上有A、B、C三個車站,一輛汽車從A站以速度v1勻速駛向B站,到達(dá)B站后不停留,以速度v2勻速駛向C站,汽車行駛路程y(千米)與行駛時間x(小時)之間的函數(shù)圖象如圖(2)所示.
(1)當(dāng)汽車在A、B兩站之間勻速行駛時,求y與x之間的函數(shù)關(guān)系式及自變量的取值范圍;
(2)求出v2的值;
(3)若汽車在某一段路程內(nèi)剛好用50分鐘行駛了90千米,求這段路程開始時x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .在同一平面直線坐標(biāo)系中
()若函數(shù)的圖象過點,函數(shù)的圖象過點,求, 的值.
()若函數(shù)的圖象經(jīng)過的頂點.
①求證: .
②當(dāng)時,比較, 的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線:與直線:都經(jīng)過,直線交y軸于點,交x軸于點A,直線交y軸于點D,P為y軸上任意一點,連接PA、PC,有以下說法:①方程組的解為;②為直角三角形;③;④當(dāng)的值最小時,點P的坐標(biāo)為其中正確的說法個數(shù)有
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請將下列證明過程補(bǔ)充完整:
已知:如圖,AE平分∠BAC,CE平分∠ACD,且∠α+∠β=90°.
求證:AB∥CD.
證明:∵CE平分∠ACD (已知),
∴∠ACD=2∠α(______________________)
∵AE平分∠BAC (已知),
∴∠BAC=_________(______________________)
∵∠α+∠β=90°(已知),
∴2∠α+2∠β=180°(等式的性質(zhì))
∴∠ACD+∠BAC==_________(______________________)
∴AB∥CD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com