【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)I是△ABC的內(nèi)心,∠AIC=124°,點(diǎn)E在AD的延長線上,則∠CDE的度數(shù)為( 。
A. 56° B. 62° C. 68° D. 78°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市中考必須在歷史、地理、生物三門學(xué)科(分別用L、D、S表示)中隨機(jī)抽考一門進(jìn)行升學(xué)考試.
(1)用列舉法寫出連續(xù)兩年抽考的情況;
(2)求連續(xù)兩年抽到相同學(xué)科進(jìn)行升學(xué)考試的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(5,0),點(diǎn)B的坐標(biāo)為(8,4),點(diǎn)C的坐標(biāo)為(3,4),連接AB、BC、OC
(1)求證四邊形OABC是菱形;
(2)直線l過點(diǎn)C且與y軸平行,將直線l沿x軸正方向平移,平移后的直線交x軸于點(diǎn)P.
①當(dāng)OP:PA=3:2時(shí),求點(diǎn)P的坐標(biāo);
②點(diǎn)Q在直線1上,在直線l平移過程中,當(dāng)△COQ是等腰直角三角形時(shí),請直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】結(jié)果如此巧合!
下面是小穎對一道題目的解答.
題目:如圖,Rt△ABC的內(nèi)切圓與斜邊AB相切于點(diǎn)D,AD=3,BD=4,求△ABC的面積.
解:設(shè)△ABC的內(nèi)切圓分別與AC、BC相切于點(diǎn)E、F,CE的長為x.
根據(jù)切線長定理,得AE=AD=3,BF=BD=4,CF=CE=x.
根據(jù)勾股定理,得(x+3)2+(x+4)2=(3+4)2.
整理,得x2+7x=12.
所以S△ABC=ACBC
=(x+3)(x+4)
=(x2+7x+12)
=×(12+12)
=12.
小穎發(fā)現(xiàn)12恰好就是3×4,即△ABC的面積等于AD與BD的積.這僅僅是巧合嗎?
請你幫她完成下面的探索.
已知:△ABC的內(nèi)切圓與AB相切于點(diǎn)D,AD=m,BD=n.
可以一般化嗎?
(1)若∠C=90°,求證:△ABC的面積等于mn.
倒過來思考呢?
(2)若ACBC=2mn,求證∠C=90°.
改變一下條件……
(3)若∠C=60°,用m、n表示△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知直線y=-x+4與y軸交于A點(diǎn),與x軸交于B點(diǎn),C點(diǎn)坐標(biāo)為(﹣2,0).
(1)求經(jīng)過A,B,C三點(diǎn)的拋物線的解析式;
(2)如果M為拋物線的頂點(diǎn),聯(lián)結(jié)AM、BM,求四邊形AOBM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn) O 是△ABC 的邊 AB 上一點(diǎn),以 OB 為半徑的⊙O 交 BC 于點(diǎn) D,過點(diǎn) D 的切線交 AC 于點(diǎn) E,且 DE⊥AC.
(1)證明:AB=AC;
(2)設(shè) AB=cm,BC=2cm,當(dāng)點(diǎn) O 在 AB 上移動到使⊙O 與邊 AC 所在直線相切時(shí), 求⊙O 的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點(diǎn),拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),點(diǎn)C是拋物線與x軸的另一個(gè)交點(diǎn)(與A點(diǎn)不重合).
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)在拋物線的對稱軸上,是否存在點(diǎn)M,使△ABM為等腰三角形?若不存在,請說明理由;若存在,求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),點(diǎn)E到點(diǎn)A,B和D的距離分別為1,2,,將△ADE繞點(diǎn)A旋轉(zhuǎn)至△ABG,連接AE,并延長AE與BC相交于點(diǎn)F,連接GF,則△BGF的面積為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com