【題目】如圖,矩形ABCD中,延長AB至E,延長CD至F,BE=DF,連接EF,與BC、AD分別相交于P、Q兩點.
(1)求證:CP=AQ;
(2)若BP=1,PQ=,∠AEF=45°,求矩形ABCD的面積.
【答案】(1)證明見解析;(2)8.
【解析】試題分析:
(1)由矩形的性質(zhì)得出∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,證出∠E=∠F,AE=CF,由ASA證明△CFP≌△AEQ,即可得出結(jié)論;(2)證明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE= ,得出EQ=PE+PQ= ,由等腰直角三角形的性質(zhì)和勾股定理得出AQ=AE=3,求出AB=AE-BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面積;
試題解析:
(1)證明:
∵四邊形ABCD是矩形
∴∠A=∠ABC=∠C=∠ADC=90°
∴AB=CD,AD=BC,AB∥CD,AD∥BC
∴∠E=∠F
∵BE=DF
∴AE=CF
在△CFP和△AEQ中
∴△CFP≌△AEQ(ASA)
∴CP=AQ
(2)解:∵AD∥BC
∴∠PBE=∠A=90°
∵∠AEF=45°
∴△BEP、△AEQ是等腰直角三角形
∴BE=BP=1,AQ=AE
∴PE= BP=
∴EQ=PE+PQ=+2 =3
∴AQ=AE=3
∴AB=AE﹣BE=2
∵CP=AQ,AD=BC
∴DQ=BP=1
∴AD=AQ+DQ=3+1=4
∴矩形ABCD的面積=AB×AD=2×4=8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s,在一條筆直公路BD的上方A處有一探測儀,如平面幾何圖,AD=24m,∠D=90°,第一次探測到一輛轎車從B點勻速向D點行駛,測得∠ABD=31°,2秒后到達(dá)C點,測得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m)
(1)求B,C的距離.
(2)通過計算,判斷此轎車是否超速.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s,在一條筆直公路BD的上方A處有一探測儀,如平面幾何圖,AD=24m,∠D=90°,第一次探測到一輛轎車從B點勻速向D點行駛,測得∠ABD=31°,2秒后到達(dá)C點,測得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m)
(1)求B,C的距離.
(2)通過計算,判斷此轎車是否超速.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是( )
A.a>0 B.3是方程ax+bx+c=0的一個根
C.a+b+c=0 D.當(dāng)x<1時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與雙曲線全相交于點A、B,且拋物線經(jīng)過坐標(biāo)原點,點的坐標(biāo)為(一2,2),點B在第四象限內(nèi).過點B作直線BC//x軸,點C為直線BC與拋物線的另一交點,已知直線BC與x軸之間的距離是點B到y(tǒng)軸的距離的4倍.記拋物線頂點為E.
(1)求雙曲線和拋物線的解析式;
(2)計算與的面積;
(3)在拋物線上是否存在點D,使的面積等于的面積的8倍?若存在,請求出點D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com