【題目】在中,,,點(diǎn)在直線上運(yùn)動(dòng)(不與點(diǎn)、重合),點(diǎn)在射線上運(yùn)動(dòng),且,設(shè).
(1)如圖①,當(dāng)點(diǎn)在邊上時(shí),且,則_______,_______;
(2)如圖②,當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的左側(cè)時(shí),其他條件不變,請(qǐng)猜想
和的數(shù)量關(guān)系,并說明理由;
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)C的右側(cè)時(shí),其他條件不變,和還滿足(2)
中的數(shù)量關(guān)系嗎?請(qǐng)畫出圖形,并說明理由.
【答案】 64° 32°
【解析】(1)由∠BAC=100°可求出∠ABC=∠ACB=40°,當(dāng)∠DAC=36°時(shí),根據(jù)∠BAD=∠BAC-∠DAC可求出∠BAD的度數(shù),根據(jù)∠ADE=∠AED=可求出∠AED的度數(shù),再根據(jù)∠CDE=∠ACB-∠AED求出∠CDE的度數(shù);
(2)由(1)的思路,∠ABC=∠ACB=40°,∠ADE=∠AED=,∠CDE=∠ACB-∠AED=,∠BAD=n-100°,即可得出結(jié)論;
(3)由(1)的思路,∠ABC=∠ACB=40°,∠ADE=∠AED=,∠CDE=∠ACB-∠AED=,∠BAD=n+100°,即可得出結(jié)論;
(1)64°,32°
(2)解:
證明:如圖②
在中,,
∴.
在中,,
∴.
∵是的外角,
∴,
∴ .
∵ ,
∴,
∴ .
解:.
在中,,
∴,
∴.
在中,,
∴
∵是的外角,
∴,
∴ .
∵ ,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°,得到平行四邊形AB′C′D′(點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),點(diǎn)C′與點(diǎn)C是對(duì)應(yīng)點(diǎn),點(diǎn)D′與點(diǎn)D是對(duì)應(yīng)點(diǎn)),點(diǎn)B′恰好落在BC邊上,則∠C的度數(shù)等于( )
A.100°
B.105°
C.115°
D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CE⊥AB于點(diǎn)E,DF⊥AB于點(diǎn)F,CE平分∠ACB,DF平分∠BDE,
求證:AC∥ED.
證明:∵CE⊥AB于E,DF⊥AB于F(已知)
∴DF∥ (垂直于同一條直線的兩直線平行)
∴∠BDF=∠ ( )
∠FDE=∠ (兩直線平行,內(nèi)錯(cuò)角相等)
∵CE平分∠ACB,DF平分∠BDE(已知)
∴∠ACE=∠ECB,∠EDF=∠BDF(角平分線的定義)
∴∠ACE=∠ (等量代換)
∴AC∥ED( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個(gè)性化學(xué)習(xí)需求,某校就“學(xué)生對(duì)知識(shí)拓展,體育特長、藝術(shù)特長和實(shí)踐活動(dòng)四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報(bào)一類),繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)求扇形統(tǒng)計(jì)圖中m的值;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)已知該校有800名學(xué)生,計(jì)劃開設(shè)“實(shí)踐活動(dòng)類”課程每班安排人,問學(xué)校開設(shè)多少個(gè)“實(shí)踐活動(dòng)類”課程的班級(jí)比較合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=mx2+(2m+1)x+2(m為實(shí)數(shù)).
(1)請(qǐng)?zhí)骄吭摵瘮?shù)圖象與x軸的公共點(diǎn)個(gè)數(shù)的情況(要求說明理由);
(2)在圖中給出的平面直角坐標(biāo)系中分別畫出m=﹣1和m=1的函數(shù)圖象,并根據(jù)圖象直接寫出它們的交點(diǎn)坐標(biāo);
(3)探究:對(duì)任意實(shí)數(shù)m,函數(shù)的圖象是否一定過(2)中的點(diǎn),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)把數(shù)軸補(bǔ)充完整;
(2)在數(shù)軸上表示下列各數(shù): 3, , , ;
(3)用“<”連接起來.________________________________;
(4)與之間的距離是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到社會(huì)的廣泛關(guān)注,某校政教處對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,進(jìn)行了隨機(jī)抽樣調(diào)查,并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有______名;
(2)請(qǐng)補(bǔ)全折線統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在解決問題:已知a=,求2a2﹣8a+1的值,他是這樣分析與解的:
∵a===2﹣
∴a﹣2=﹣
∴(a﹣2)2=3,a2﹣4a+4=3
∴a2﹣4a=﹣1
∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1
請(qǐng)你根據(jù)小明的分析過程,解決如下問題:
(1)化簡+++…+
(2)若a=,求4a2﹣8a+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC與△DEF中,給出以下六個(gè)條件:
(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.
以其中三個(gè)作為已知條件,不能判斷△ABC與△DEF全等的是( 。
A. (1)(5)(2) B. (1)(2)(3) C. (2)(3)(4) D. (4)(6)(1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com