【題目】如圖,在平面直角坐標系中,菱形OACB的頂點O在原點,點C的坐標為(4,0),點B的縱坐標是﹣1,則頂點A坐標是( )
A.(2,1)
B.(1,﹣2)
C.(1,2)
D.(2,﹣1)
科目:初中數(shù)學 來源: 題型:
【題目】某校為迎接體育中考,了解學生的體育情況,學校隨機調(diào)查了本校九年級50名學生“30秒跳繩”的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:
30秒跳繩次數(shù)的頻數(shù)、頻率分布表
成績段 | 頻數(shù) | 頻率 |
0≤x<20 | 5 | 0.1 |
20≤x<40 | 10 | a |
40≤x<60 | b | 0.14 |
60≤x<80 | m | c |
80≤x<100 | 12 | n |
根據(jù)以上圖表信息,解答下列問題:
(1)表中的a= , m=;
(2)請把頻數(shù)分布直方圖補充完整;(畫圖后請標注相應的數(shù)據(jù))
(3)若該校九年級共有600名學生,請你估計“30秒跳繩”的次數(shù)60次以上(含60次)的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,四邊形 OABC 的頂點 A、C 分別在 x 軸和 y 軸上,頂點B 在第一象限,OA//CB.
(1)如圖 1,若點 A(6,0),B(4,3),點 M 是 y 軸上一點,且 SBCM SAOM ,求點 M的坐標;
(2)如圖 2,點 P 是 x 軸上點 A 左邊的一點,連接 PB,∠PBC 和∠PAB 的角平分線交于點D,求證:∠ABP+2∠ADB=180°;
(3)如圖 3,點 P 是 x 軸上點 A 左邊的一點,點 Q 是射線 BC 上一點,連接 PB、PQ,∠ABP和∠BQP 的平分線相交于點 E,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,矩形OABC的對角線AC=12,∠ACO=30°
(1)求B、C兩點的坐標;
(2)過點G()作GF⊥AC,垂足為F,直線GF分別交AB、OC于點E、D,求直線DE的解析式;
(3)在⑵的條件下,若點M在直線DE上,平面內(nèi)是否存在點P,使以O、F、M、P為頂點的四邊形是菱形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù) yl= x ( x ≥0 ) , ( x > 0 )的圖象如圖所示,則結論: ① 兩函數(shù)圖象的交點A的坐標為(3 ,3 ) ② 當 x > 3 時, ③ 當 x =1時, BC = 8
④ 當 x 逐漸增大時, yl 隨著 x 的增大而增大,y2隨著 x 的增大而減小.其中正確結論的序號是_ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電信公司提供的移動通訊服務的收費標準有兩種套餐如表
套餐 | 套餐 | |
每月基本服務費(元) | 20 | 30 |
每月免費通話時間(分) | 100 | 150 |
每月超過免費通話時間加收通話費(元/分) | 0.4 | 0.5 |
李民選用了套餐
(1)5月份李民的通話時間為120分鐘,這個月李民應付話費多少元?
(2)李民6月份的通話時間超過了150分鐘,根據(jù)自己6月份的通話時間情況計算,如果自己選用套餐可以省4元錢,李民6月份的通話時間是多少分鐘?
(3)10月份李民改用了套餐,李民發(fā)現(xiàn)如果與9月份交相同的話費,10月份他可以多通話15分鐘,李民9月份交了多少話費?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】你知道什么是“低碳生活”嗎?“低碳生活”是指人們生活中盡量減少所耗能量,從而降低碳(特別是二氧化碳)的排放量的一種生活方式.
(1)如果用x(L)表示耗油量,用y(kg)表示開私家車的二氧化碳排放量,則y與x之間的關系式可表示為___________;
(2)在上述關系式中,耗油量每增加1L,二氧化碳排放量增加________kg.當耗油量從10L增加到100L時,二氧化碳排放量從________kg增加到________kg;
(3)小穎家本月家居用電的耗電量約為90kwh、開私家車的耗油量約為70L、天然氣使用量約20m、自來水使用量約6噸,請你計算一下小穎家本月這幾項的二氧化碳排放總量;
(4)你打算從哪些小事做起踐行低碳生活?請直接寫出兩條.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】分如圖,在ABCD中,點E、F分別是AD、BC的中點,分別連接BE、DF、BD.
(1)求證:△AEB≌△CFD;
(2)若四邊形EBFD是菱形,求∠ABD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠MON = 50°,OE 平分∠MON,點A、B、C分別是射線OM、OE、ON上的動點(A、B、C不與點O重合),連接AC交射線OE于點D、設∠OAC = x°.
(1)如圖①,若AB//ON,
①則∠ABO 的度數(shù)是________;
②當∠BAD =∠ABD 時,x=_______;當∠BAD = ∠BDA 時,x=________.
(2)如圖②,若AB⊥OE,則是否存在這樣的x值,使得 △ABD 中有一個角是另一個角的兩倍.存在,直接寫出x的值;不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com