【題目】如圖1,△ABD,△ACE都是等邊三角形,
(1)求證:△ABE≌△ADC;
(2)若∠ACD=15°,求∠AEB的度數(shù);
(3)如圖2,當△ABD與△ACE的位置發(fā)生變化,使C、E、D三點在一條直線上,求證:AC∥BE.
【答案】(1)見解析(2) ∠AEB=15°(3) 見解析
【解析】試題分析:(1)由等邊三角形的性質可得AB=AD,AE=AC,∠DAB=∠EAC=60°,即可得∠DAC=∠BAE,利用SAS即可判定△ABE≌△ADC;(2)根據(jù)全等三角形的性質即可求解;(3)由(1)的方法可證得△ABE≌△ADC,根據(jù)全等三角形的性質和等邊三角形的性質可得∠AEB=∠ACD =60°,即可得∠AEB=∠EAC,從而得AC∥BE.
試題解析:
(1)證明:∵△ABD,△ACE都是等邊三角形
∴AB=AD,AE=AC,
∠DAB=∠EAC=60°,
∴∠DAC=∠BAE,
在△ABE和△ADC中,
∴,
∴△ABE≌△ADC;
(2)由(1)知△ABE≌△ADC,
∴∠AEB=∠ACD,
∵∠ACD=15°,
∴∠AEB=15°;
(3)同上可證:△ABE≌△ADC,
∴∠AEB=∠ACD,
又∵∠ACD=60°,
∴∠AEB=60°,
∵∠EAC=60°,
∴∠AEB=∠EAC,
∴AC∥BE.
科目:初中數(shù)學 來源: 題型:
【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示正整數(shù)后,背面朝上,洗勻放好,現(xiàn)從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張.
(1)請用樹狀圖或列表的方法表示兩次抽取卡片的所有可能出現(xiàn)的結果(卡片用A,B,C,D表示);
(2)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù)和方差分別是( 。
A. 2, B. 4,3 C. 4, D. 2,1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為弘揚“敬老愛老”傳統(tǒng)美德,某校八年級(1)班的學生要去距離學校10km的敬老院看望老人,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發(fā),結果乘汽車的同學早到10min.已知汽車的速度是騎車學生的4倍,求騎車學生的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC的平分線AD交BC于點D,DE垂直平分AC,垂足為點E,∠BAD=29°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=kx+b經(jīng)過點A(5,0),B(1,4).
(1)求直線AB的解析式;
(2)若直線y=2x﹣4與直線AB相交于點C,求點C的坐標;
(3)根據(jù)圖象,寫出關于x的不等式2x﹣4>kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在城鎮(zhèn)化建設中,開發(fā)商要處理A地大量的建筑垃圾,A地只能容納1臺裝卸機作業(yè),裝卸機平均每6分鐘可以給工程車裝滿一車建筑垃圾,每輛工程車要將建筑垃圾運送至20千米的B處傾倒,每次傾倒時間約為1分鐘,傾倒后立即返回A地等候下一次裝運,直到裝運完畢;工程車的平均速度為40千米/時.
(1)一輛工程車運送一趟建筑垃圾(從裝車到返回)需要多少分鐘?
(2)至少安排多少輛工程車既能保證裝卸機不空閑,又能保證工程車最少等候時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若購進A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購進A品牌的化妝品3套,B品牌的化妝品2套,需要450元.
求A、B兩種品牌的化妝品每套進價分別為多少元?
若銷售1套A品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元,根據(jù)市場需求,化妝品店老板決定,購進B品牌化妝品的數(shù)量比購進A品牌化妝品數(shù)量的2倍還多4套,且B品牌化妝品最多可購進40套,這樣化妝品全部售出后,可使總的獲利不少于1200元,問有幾種進貨方案?如何進貨?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD在平面直角坐標系中,已知點A(0,a),B(0,6),C(b,6),且滿足a=+8.
(1)請直接寫出A、C、D三個點的坐標,A ,C ,D ;
(2)連接線段BD、OD,試求三角形BOD的面積;
(3)若長方形ABCD以每秒1個單位長度勻速向下運動,設運動的時間為t秒,問是否存在某一時刻,三角形BOD的面積與長方形ABCD的面積相等?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com