【題目】“校園讀詩(shī)詞誦經(jīng)典比賽”結(jié)束后,評(píng)委劉老師將此次所有參賽選手的比賽成績(jī)(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計(jì)圖和頻數(shù)直方圖,部分信息如下圖:
扇形統(tǒng)計(jì)圖 頻數(shù)直方圖
(1)參加本次比賽的選手共有________人,參賽選手比賽成績(jī)的中位數(shù)在__________分?jǐn)?shù)段;補(bǔ)全頻數(shù)直方圖.
(2)若此次比賽的前五名成績(jī)中有名男生和名女生,如果從他們中任選人作為獲獎(jiǎng)代表發(fā)言,請(qǐng)利用表格或畫(huà)樹(shù)狀圖求恰好選中男女的概率.
【答案】(1)50;;補(bǔ)圖見(jiàn)解析;(2).
【解析】
(1)利用比賽成績(jī)?cè)?/span>的人數(shù)除以所占的百分比即可求出參加本次比賽的選手的人數(shù),然后利用總?cè)藬?shù)乘比賽成績(jī)?cè)?/span>所占的百分比,即可求出成績(jī)?cè)?/span>的人數(shù),從而求出成績(jī)?cè)?/span>的人數(shù)和成績(jī)?cè)?/span>的人數(shù),最后根據(jù)中位數(shù)的定義即可求出中位數(shù);
(2)根據(jù)題意,畫(huà)出樹(shù)狀圖,然后根據(jù)概率公式求概率即可.
解:(1),
所以參加本次比賽的選手共有人,
頻數(shù)直方圖中“”這兩組的人數(shù)為人,
所以頻數(shù)直方圖中“”這一組的人數(shù)為人
“”這一組的人數(shù)為人
中位數(shù)是第和第位選手成績(jī)的平均值,即在“”分?jǐn)?shù)段
故答案為:;;
補(bǔ)全條形統(tǒng)計(jì)圖如下所示:
(2)畫(huà)樹(shù)狀圖為:
共有種等可能的結(jié)果數(shù),其中恰好選中男女的結(jié)果數(shù)為,所以恰好選中男女的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里裝有紅、黑兩種顏色的球共60只,這些球除顏色外其余完全相同.為了估計(jì)紅球和黑球的個(gè)數(shù),七(2)班的數(shù)學(xué)學(xué)習(xí)小組做了摸球?qū)嶒?yàn).他們將球攪勻后,從盒子里隨機(jī)摸出一個(gè)球記下顏色,再把球放回盒子中,多次重復(fù)上述過(guò)程,得到表中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù)n | 50 | 100 | 300 | 500 | 800 | 1000 |
摸到紅球的次數(shù)m | 14 | 33 | 95 | 155 | 241 | 298 |
摸到紅球的頻率 | 0.28 | 0.33 | 0.317 | 0.31 | 0.301 | 0.298 |
請(qǐng)估計(jì):當(dāng)次數(shù)n足夠大時(shí),摸到紅球的頻率將會(huì)接近_____.(精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,過(guò)⊙T外一點(diǎn)P引它的兩條切線,切點(diǎn)分別為M,N,若,則稱P為⊙T的環(huán)繞點(diǎn).
(1)當(dāng)⊙O半徑為1時(shí),
①在中,⊙O的環(huán)繞點(diǎn)是___________;
②直線y=2x+b與x軸交于點(diǎn)A,y軸交于點(diǎn)B,若線段AB上存在⊙O的環(huán)繞點(diǎn),求b的取值范圍;
(2)⊙T的半徑為1,圓心為(0,t),以為圓心,為半徑的所有圓構(gòu)成圖形H,若在圖形H上存在⊙T的環(huán)繞點(diǎn),直接寫(xiě)出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,以AC為直徑的⊙O交BC于點(diǎn)D,點(diǎn)E為AC延長(zhǎng)線上一點(diǎn),且∠BAC=2∠CDE.
(1)求證:DE是⊙O的切線;
(2)若cosB=,CE=2,求DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從﹣4、3、5這三個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù),記為a,那么,使關(guān)于x的方程x2+4x+a=0有解,且使關(guān)于x的一次函數(shù)y=2x+a的圖象與x軸、y軸圍成的三角形面積恰好為4的概率_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)在函數(shù)的圖象上,矩形的邊在軸上,是對(duì)角線的中點(diǎn),函數(shù)的圖象經(jīng)過(guò)兩點(diǎn),點(diǎn)的橫坐標(biāo)為,點(diǎn)的橫坐標(biāo)為,解答下列問(wèn)題:
(1)求反比例函數(shù)的解析式;
(2)求點(diǎn)的坐標(biāo)(用表示);
(3)當(dāng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)某海域有A,B兩個(gè)港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達(dá)位于B港口南偏東75°方向的C處,求該船與B港口之間的距離即CB的長(zhǎng)(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D、E分別在邊BC、AC上,且CD=CE,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF,CF,連接BE并延長(zhǎng)交CF于點(diǎn)G.下列結(jié)論:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 .(填寫(xiě)所有正確結(jié)論的序號(hào))
【答案】①②③④.
【解析】
試題分析:①由△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,
因EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,∠BAE=∠CAF,AE=AF ,可判定△ABE≌△ACF,故①正確.②由∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③由△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF ,可判定△BCE≌△FDC,所以S△BCE=S△FDC,即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④由△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以=,即=,又因BD=2DC,DC=DE,可得=2,即FG=2EG.故④正確.
考點(diǎn):三角形綜合題.
【題型】填空題
【結(jié)束】
19
【題目】先化簡(jiǎn),再求值:(a+1-)÷(),其中a=2+.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一家健身俱樂(lè)部收費(fèi)標(biāo)準(zhǔn)為180元/次,若購(gòu)買(mǎi)會(huì)員年卡,可享受如下優(yōu)惠:
會(huì)員年卡類(lèi)型 | 辦卡費(fèi)用(元) | 每次收費(fèi)(元) |
A類(lèi) | 1500 | 100 |
B類(lèi) | 3000 | 60 |
C類(lèi) | 4000 | 40 |
例如,購(gòu)買(mǎi)A類(lèi)會(huì)員年卡,一年內(nèi)健身20次,消費(fèi)元,若一年內(nèi)在該健身俱樂(lè)部健身的次數(shù)介于50-60次之間,則最省錢(qián)的方式為( )
A.購(gòu)買(mǎi)A類(lèi)會(huì)員年卡B.購(gòu)買(mǎi)B類(lèi)會(huì)員年卡
C.購(gòu)買(mǎi)C類(lèi)會(huì)員年卡D.不購(gòu)買(mǎi)會(huì)員年卡
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com