【題目】計(jì)算:
(1)18﹣(﹣30).
(2).
(3).
(4).
(5)﹣22×7﹣(﹣3)×6+5.
(6).
【答案】(1)48;(2);(3)3;(4)-55;(5)-5;(6)-6.
【解析】
(1)利用有理數(shù)的減法法則計(jì)算即可求值;
(2)同分母的相結(jié)合后,然后再按有理數(shù)的加減混合運(yùn)算計(jì)算即可;
(3)按照有理數(shù)的乘除混合運(yùn)算順序和法則計(jì)算即可;
(4)利用除法法則變形,再利用乘法分配律計(jì)算即可求值;
(5)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘法運(yùn)算,最后算加減運(yùn)算即可求值;
(6)先計(jì)算乘方運(yùn)算,再計(jì)算乘除運(yùn)算,最后算加減運(yùn)算即可求值.
解:(1)原式=18+30=48;
(2)原式=﹣+3﹣﹣=;
(3)原式=(-16)×××=3;
(4)原式=(+3﹣﹣)×(﹣24)
=﹣12﹣72+15+14
=﹣55;
(5)原式=;
(6)原式=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是一種簡易臺(tái)燈,在其結(jié)構(gòu)圖(2)中燈座為△ABC(BC伸出部分不計(jì)),A、C、D在同一直線上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,燈桿CD長為40cm,燈管DE長為15cm.
(1)求DE與水平桌面(AB所在直線)所成的角;
(2)求臺(tái)燈的高(點(diǎn)E到桌面的距離,結(jié)果精確到0.1cm).
(參考數(shù)據(jù):sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線的頂點(diǎn)為點(diǎn)P,與y軸交于點(diǎn)B.點(diǎn)A坐標(biāo)為(3,2).點(diǎn)M為拋物線上一動(dòng)點(diǎn),以點(diǎn)M為圓心,MA為半徑的圓交x軸于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)).
(1)如圖②,當(dāng)點(diǎn)M與點(diǎn)B重合時(shí),求CD的長;
(2)當(dāng)點(diǎn)M在拋物線上運(yùn)動(dòng)時(shí),CD的長度是否發(fā)生變化?若變化,求出CD關(guān)于點(diǎn)M橫坐標(biāo)x的函數(shù)關(guān)系式;若不發(fā)生變化,求出CD的長;
(3)當(dāng)△ACP與△ADP相似時(shí),求出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣3x+m(m為常數(shù))的圖象與x軸的一個(gè)交點(diǎn)為(1,0),則關(guān)于x的一元二次方程x2﹣3x+m=0的兩實(shí)數(shù)根是( )
A. x1=1,x2=﹣1B. x1=1,x2=3C. x1=1,x2=2D. x1=1,x2=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,tanA=,M,N分別在邊AD,BC上,將四邊形AMNB沿MN翻折,使AB的對(duì)應(yīng)線段EF經(jīng)過頂點(diǎn)D,當(dāng)EF⊥AD時(shí),的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列4個(gè)結(jié)論:①abc>0; ②b2>4ac; ③4a+2b+c>0;④2a+b=0.其中正確的有( 。﹤(gè).
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解題:學(xué)習(xí)了二次根式后,你會(huì)發(fā)現(xiàn)一些含有根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+2=(1+)2,我們來進(jìn)行以下的探索:
設(shè)a+b=(m+n)2(其中a,b,m,n都是正整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣就得出了把類似a+b的式子化為平方式的方法,請仿照上述方法探索并解決下列問題:
(1)當(dāng)a,b,m,n都為正整數(shù)時(shí),若a+b=(m+n)2,用含m,n的式子分別表示a,b,得a= ,b= .
(2)若a﹣4=(m﹣n)2且a,m,n都為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是由北京國際數(shù)學(xué)家大會(huì)的會(huì)徽演化而成的圖案,其主體部分是由一連串的等腰直角三角形依次連接而成,其中∠MA1A2=∠MA2A3…=∠MAnAn+1=90°,(n為正整數(shù)),若M點(diǎn)的坐標(biāo)是(﹣1,2),A1的坐標(biāo)是(0,2),則A22的坐標(biāo)為( )
A.(﹣1﹣29,2﹣29)B.(1﹣29,2﹣29)
C.(﹣1﹣210,2﹣210)D.(1﹣210,2﹣210)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則
①二次函數(shù)的最大值為a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com