【題目】如圖,已知長(zhǎng)方形ABCD中,AD=6cm,AB=4cm,點(diǎn)E為AD的中點(diǎn).若點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BC上由點(diǎn)B向點(diǎn)C運(yùn)動(dòng).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,△AEP與△BPQ是否全等,請(qǐng)說明理由,并判斷此時(shí)線段PE和線段PQ的位置關(guān)系;
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,運(yùn)動(dòng)時(shí)間為t秒,設(shè)△PEQ的面積為Scm2,請(qǐng)用t的代數(shù)式表示S;
(3)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△AEP與△BPQ全等?
【答案】(1)見詳解;(2)S=t+6;(3)
【解析】
(1)本題很容易證明△AEP≌△BPQ,這樣可得出∠AEP=∠BPQ,因?yàn)椤?/span>AEP+∠APE=90°,可得出∠BPQ+∠APE=90°,這即可判斷出結(jié)論.
(2)可分別用t表示出AP、BQ、BP、CQ的長(zhǎng)度,然后用矩形的面積減去△APE、△BPQ及梯形EDCQ的面積即可得出△PEQ的面積為Scm2.
(3)設(shè)Q運(yùn)動(dòng)的速度為xcm/s,則根據(jù)△AEP與△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,從而可列出方程組,解出即可得出答案.
(1)∵長(zhǎng)方形ABCD,
∴∠A=∠B=90°,
∵點(diǎn)E為AD的中點(diǎn),AD=6cm,
∴AE=3cm,
又∵P和Q的速度相等可得出AP=BQ=1cm,BP=3,
∴AE=BP,
在△AEP和△BQP中,
∴△AEP≌△BPQ,
∴∠AEP=∠BPQ,
又∵∠AEP+∠APE=90°,
故可得出∠BPQ+∠APE=90°,即∠EPQ=90°,
即EP⊥PQ.
(2)連接QE,由題意得:AP=BQ=t,BP=4t,CQ=6t,
SPEQ=SABCDSBPQSEDCQSAPE
=AD×ABAE×APBP×BQ (DE+CQ)×CD
=24×3tt(4t) ×4(3+6t)
=t+6,
(3)設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為xcm/s,
①經(jīng)過y秒后,△AEP≌△BQP,則AP=BP,AE=BQ,
∴,
解得:,
即點(diǎn)Q的運(yùn)動(dòng)速度為cm/s時(shí)能使兩三角形全等.
②經(jīng)過y秒后,△AEP≌△BPQ,則AP=BQ,AE=BP,
∴
解得: (舍去).
綜上所述,點(diǎn)Q的運(yùn)動(dòng)速度為cm/s時(shí)能使兩三角形全等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)(1)班要從班級(jí)里數(shù)學(xué)成績(jī)較優(yōu)秀的甲、乙兩位學(xué)生中選拔一人參加“全國(guó)初中數(shù)學(xué)聯(lián)賽”,為此,數(shù)學(xué)老師對(duì)兩位同學(xué)進(jìn)行了輔導(dǎo),并在輔導(dǎo)期間測(cè)驗(yàn)了6次,測(cè)驗(yàn)成績(jī)?nèi)缦卤?單位:分):
次數(shù),1, 2, 3, 4, 5, 6
甲:79,78,84,81,83,75
乙:83,77,80,85,80,75
利用表中數(shù)據(jù),解答下列問題:
(1)計(jì)算甲、乙測(cè)驗(yàn)成績(jī)的平均數(shù).
(2)寫出甲、乙測(cè)驗(yàn)成績(jī)的中位數(shù).
(3)計(jì)算甲、乙測(cè)驗(yàn)成績(jī)的方差.(結(jié)果保留小數(shù)點(diǎn)后兩位)
(4)根據(jù)以上信息,你認(rèn)為老師應(yīng)該派甲、乙哪名學(xué)生參賽?簡(jiǎn)述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形ABCD沿對(duì)角線BD進(jìn)行折疊,折疊后點(diǎn)C落在點(diǎn)F處,DF交AB于點(diǎn)E.
(1)求證:;
(2)判斷AF與BD是否平行,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,3).雙曲線y=(x>0)的圖象經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE.
(1)直接寫出k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是OC邊上一點(diǎn),且FB⊥DE,求直線FB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線上有一點(diǎn),過作射線,嘉琪將一直角三角板的直角頂點(diǎn)與重合.
(1)嘉琪把三角板如圖1放置,若,則 , ;
(2)嘉琪將直角三角板繞點(diǎn)順時(shí)針旋轉(zhuǎn)一定角度后如圖2,使平分,且,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:等邊分別是上的動(dòng)點(diǎn),且,交于點(diǎn).
如圖1,當(dāng)點(diǎn)分別在線段和線段上時(shí),求的度數(shù);
如圖2,當(dāng)點(diǎn)分別在線段和線段的延長(zhǎng)線上時(shí),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五一假期某學(xué)校計(jì)劃組織385名師生租車旅游,現(xiàn)知道出租公司有42座和60座客車,每輛42座比每輛60座客車租金便宜140元,租3輛42座和2每輛60座客車租金共計(jì)1880元
(1) 求兩種車租金每輛各多少元?
(2) 若學(xué)校同時(shí)租用這兩種客車8輛(可以坐不滿),總租金不超過3200元,有幾種租車方案?請(qǐng)選擇最節(jié)省的租車方案
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)()的圖象經(jīng)過點(diǎn),AB⊥x軸于點(diǎn)B,點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱, CD⊥x軸于點(diǎn)D,△ABD的面積為8.
(1)求m,n的值;
(2)若直線(k≠0)經(jīng)過點(diǎn)C,且與x軸,y軸的交點(diǎn)分別為點(diǎn)E,F,當(dāng)時(shí),求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)將三張形狀、大小完全相同的平行四邊形透明紙片分別放在方格紙中,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,并且平行四邊形 紙片的每個(gè)頂點(diǎn)與小正方形的頂點(diǎn)重合(如圖①、圖②、圖③).
圖②矩形(正方形)
,
分別在圖①、圖②、圖③中,經(jīng)過平行四邊形紙片的任意一個(gè)頂點(diǎn)畫一條裁剪線,沿此裁剪線將平行四邊形紙片裁成兩部分,并把這兩部分重新拼成符合下列要求的幾何圖形.
要求:
(1)在左邊的平行四邊形紙片中畫一條裁剪線,然后在右邊相對(duì)應(yīng)的方格紙中,按實(shí)際大小畫出所拼成的符合要求的幾何圖形.
(2)裁成的兩部分在拼成幾何圖形時(shí)要互不重疊且不留空隙.
(3)所畫出的幾何圖形的各頂點(diǎn)必須與小正方形的頂點(diǎn)重合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com