精英家教網 > 初中數學 > 題目詳情

【題目】在“綠滿重慶”行動中,江北區(qū)種植了大量的小葉榕和銀杏樹,根據林業(yè)專家的分析,樹葉在進行光合作用后產生的分泌物能在空氣中吸附懸浮顆粒,這樣就達到了滯塵凈化空氣的作用.

1)若某小區(qū)今年要種植銀杏樹和小葉榕共450株,且銀杏樹的數量不超過小葉榕數量的2倍,求今年該小區(qū)小葉榕至少種植多少株?

2)已知每一片銀杏樹葉一年平均滯塵量為,一株銀杏樹去年有3500片樹葉,冬季樹葉全部掉落后,今年新長出了樹葉,且這株銀杏今年的滯塵量是去年滯塵量的11倍還多.已知每片小葉榕樹葉的滯塵量比銀杏樹葉多,一株小葉榕今年的樹葉總量比今年的這株銀杏要少,明年這株小葉榕樹葉將在今年的基礎上掉落,但又會新長出1000片樹葉,若今明兩年這株小葉榕共滯塵量為,求的值.

【答案】1)該小區(qū)小葉榕至少種植150株;(2)該小區(qū)小葉榕至少種植150株,的值為35

【解析】

1)設今年該小區(qū)小葉榕種植x株,則銀杏樹種植(450-x)株,根據銀杏樹的數量不超過小葉榕數量的2倍,即可得出關于x的一元一次不等式,解之取其中的最小值即可得出結論;
2)由這株銀杏今年的滯塵量是去年滯塵量的1.1倍還多1500mg可求出今年這株銀杏樹的樹葉數,根據滯塵總量=每片樹葉的滯塵量×樹葉數量結合今明兩年這株小葉榕共滯塵量為80000mg,即可得出關于a的一元二次方程,解之取其正值即可得出結論.

解:(1)設今年該小區(qū)小葉榕種植株,則銀杏樹種植株,

由題意得:,

解得:

∴該小區(qū)小葉榕至少種植150株.

2)設今年這株銀杏有片樹葉,由題意得:

;

則有

,整理化簡得

解得:,(舍),

答:該小區(qū)小葉榕至少種植150株,的值為35

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知一次函數y=k1x+b的圖象分別與x軸、y軸的正半軸交于 A,B 兩點,且與反比例函數y= 交于 C,E 兩點,點 C 在第二象限,過點 C 作CD⊥x軸于點 D,AC=2 ,OA=OB=1.

(1)△ADC 的面積;
(2)求反比例函數y= 與一次函數的y=k1x+b表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:

1)(a5)(a2)(a+3);

2)(1x+y)(x1+y);

3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為深化義務教育課程改革,滿足學生的個性化學習需求,某校就“學生對知識拓展,體育特長、藝術特長和實踐活動四類選課意向”進行了抽樣調查(每人選報一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整),請根據圖中信息,解答下列問題:

(1)求扇形統(tǒng)計圖中m的值,并補全條形統(tǒng)計圖;
(2)在被調查的學生中,隨機抽一人,抽到選“體育特長類”或“藝術特長類”的學生的概率是多少?
(3)已知該校有800名學生,計劃開設“實踐活動類”課程每班安排20人,問學校開設多少個“實踐活動類”課程的班級比較合理?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知a,b,c分別是ABC的三邊長,且滿足2a4+2b4+c4=2a2c2+2b2c2ABC( )

A. 等腰三角形 B. 等腰直角三角形

C. 直角三角形 D. 等腰三角形或直角三角形

【答案】B

【解析】解析:∵2a4+2b4+c4=2a2c2+2b2c2,4a4-4a2c2+c4+4b4-4b2c2+c4=0,

2a2-c22+2b2-c22=0,2a2-c2=02b2-c2=0,

c=2ac=2b,

a=b,且a2+b2=c2,

∴△ABC為等腰直角三角形.

故選B.

型】單選題
束】
11

【題目】將圖1中陰影部分的小長方形變換到圖2的位置,你能根據兩個圖形的面積關系得到的數學公式是_____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,平行四邊形的邊軸上,點,線段,線段,且,的交點記為,連接

1)求的面積.

2)如圖2,在線段上有兩個動點點上方),且,點中點,點為線段上一動點,當的值最小時,求出此時點的坐標;

3)在(2)的條件下,在軸上找一點,軸上找一點,使得取得最小值,請求出的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC中,AC=BC,點D、E、F分別是線段ACBC、AD的中點,BFED的延長線交于點G,連接GC

1)求證:AB=GD;

2)當CG=EG時,且AB=2,求CE

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點E,∠CDB的平分線DF交BC于點F,連接BD.

(1)求證:△ABE≌△CDF;
(2)若AB=DB,求證:四邊形DFBE是矩形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,菱形ABCD的頂點A的坐標為(20),點B的坐標為(0,1),對角線BDx軸平行,若直線ykx+5+2kk≠0)與菱形ABCD有交點,則k的取值范圍是(  )

A.B.

C.D.2≤k≤2k≠0

查看答案和解析>>

同步練習冊答案