【題目】如圖,菱形ABCD中,對(duì)角線AC、BD交于O點(diǎn),DE∥AC,CE∥BD.
(1)求證:四邊形OCED為矩形;
(2)在BC上截取CF=CO,連接OF,若AC=16,BD=12,求四邊形OFCD的面積.
【答案】(1)證明見解析;(2).
【解析】
(1)由DE∥AC,CE∥BD可得四邊形OCED為平行四邊形,又AC⊥BD從而得四邊形OCED為矩形;
(2)過點(diǎn)O作OH⊥BC,垂足為H,由已知可得三角形OBC、OCD的面積,BC的長,由面積法可得OH的長,從而可得三角形OCF的面積,三角形OCD與三角形OCF的和即為所求.
(1)∵DE∥AC,CE∥BD,∴四邊形OCED為平行四邊形.又∵四邊形ABCD是菱形,∴AC⊥BD.∴∠DOC=90°.∴四邊形OCED為矩形.
(2)∵菱形ABCD,∴AC與BD互相垂直平分于點(diǎn)O,∴OD=OB=BD=6,OA=OC=AC=8,∴CF=CO=8,S△BOC=S△DOC==24,在Rt△OBC中,BC==10,.作OH⊥BC于點(diǎn)H,則有BC·OH=24,∴OH=,∴S△COF=CF·OH=.∴S四邊形OFCD=S△DOC+S△OCF=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的直徑,點(diǎn)為的延長線上一點(diǎn),直線切于點(diǎn),過點(diǎn)作,垂足為交于點(diǎn),連接 .
(1)求證:平分;
(2)求的長;
(3)是上的一動(dòng)點(diǎn),交于點(diǎn),連接.是否存在點(diǎn),使得?如果存在,請(qǐng)證明你的結(jié)論,并求的長;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(6,5),點(diǎn)E在邊AB上,且AE=2,已知點(diǎn)P為y軸上一動(dòng)點(diǎn),連接EP,過點(diǎn)O作直線EP的垂線段OH,垂足為點(diǎn)H,在點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到原點(diǎn)O的過程中,點(diǎn)H的運(yùn)動(dòng)路徑長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知拋物線(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸負(fù)半軸交于點(diǎn)C,頂點(diǎn)為D,已知:S四邊形ACBD=1:4.
(1)求點(diǎn)D的坐標(biāo)(用僅含c的代數(shù)式表示);
(2)若tan∠ACB=,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=30°,直線a∥b,頂點(diǎn)C在直線b上,直線a交AB于點(diǎn)D,交AC于點(diǎn)E,若∠1=145°,則∠2的度數(shù)是( )
A.30°B.35°C.40°D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:點(diǎn)P是△ABC內(nèi)部或邊上的點(diǎn)(頂點(diǎn)除外),在△PAB,△PBC,△PCA中,若至少有一個(gè)三角形與△ABC相似,則稱點(diǎn)P是△ABC的自相似點(diǎn).
例如:如圖1,點(diǎn)P在△ABC的內(nèi)部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點(diǎn)P為△ABC的自相似點(diǎn).
請(qǐng)你運(yùn)用所學(xué)知識(shí),結(jié)合上述材料,解決下列問題:
在平面直角坐標(biāo)系中,點(diǎn)M是曲線C:上的任意一點(diǎn),點(diǎn)N是x軸正半軸上的任意一點(diǎn).
(1) 如圖2,點(diǎn)P是OM上一點(diǎn),∠ONP=∠M, 試說明點(diǎn)P是△MON的自相似點(diǎn); 當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時(shí),求點(diǎn)P 的坐標(biāo);
(2) 如圖3,當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時(shí),求△MON的自相似點(diǎn)的坐標(biāo);
(3) 是否存在點(diǎn)M和點(diǎn)N,使△MON無自相似點(diǎn),?若存在,請(qǐng)直接寫出這兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-x+3與x軸,y軸分別交于B,C兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過B,C兩點(diǎn),點(diǎn)A是拋物線與x軸的另一個(gè)交點(diǎn).
(1)求此拋物線的函數(shù)解析式;
(2)在拋物線上是否存在點(diǎn)P,使S△PAB=2S△CAB,若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形EFGH的頂點(diǎn)E,G分別在菱形ABCD的邊AD,BC上,頂點(diǎn)F,H在菱形ABCD的對(duì)角線BD上.
(1)求證:BG=DE;
(2)若E為AD中點(diǎn),FH=2,求菱形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,線段AC是⊙O的直徑,過A點(diǎn)作直線BF交⊙O于A、B兩點(diǎn),過A點(diǎn)作∠FAC的角平分線交⊙O于D,過D作AF的垂線交AF于E.
(1)證明DE是⊙O的切線;
(2)證明AD2=2AEOA;
(3)若⊙O的直徑為10,DE+AE=4,求AB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com