精英家教網 > 初中數學 > 題目詳情
在10×10的網格紙上建立平面直角坐標系如圖所示,在Rt△ABO中,∠OAB=90°,且點B的坐標為(3,4).
(1)畫出△0AB向左平移3個單位后的△01A1B1,寫出點B1的坐標;
(2)畫出△0AB繞點O順時針旋轉90°后的△0A2B2,并求點B旋轉到點B2時,點B經過的路線長(π取3.14,結果精確到0.1)

【答案】分析:(1)根據平移的規(guī)律找到出平移后的對應點的坐標,順次連接即可;
(2)根據旋轉的性質找出旋轉后各個對應點的坐標,順次連接即可.點B經過的路線是以點A1作為圓心,AB長為半徑,圓心角是90度的扇形的弧長.
解答:解:(1)將各點向左平移三個單位,所作圖形如下:

結合直角坐標系可得出:B1(0,4);
(2)根據題意所述三要素,所作圖形如下:

=5,
∴點B旋轉到B2所經過的路線為=≈7.9.
點評:本題考查的是平移變換與旋轉變換作圖.
作平移圖形時,找關鍵點的對應點也是關鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應點;②確定圖形中的關鍵點;③利用第一組對應點和平移的性質確定圖中所有關鍵點的對應點;④按原圖形順序依次連接對應點,所得到的圖形即為平移后的圖形.
作旋轉后的圖形的依據是旋轉的性質,基本作法是①先確定圖形的關鍵點;②利用旋轉性質作出關鍵點的對應點;③按原圖形中的方式順次連接對應點.要注意旋轉中心,旋轉方向和角度.
練習冊系列答案
相關習題

科目:初中數學 來源:2013年浙江省湖州市中考數學試卷(解析版) 題型:選擇題

如圖,在10×10的網格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.若拋物線經過圖中的三個格點,則以這三個格點為頂點的三角形稱為拋物線的“內接格點三角形”.以O為坐標原點建立如圖所示的平面直角坐標系,若拋物線與網格對角線OB的兩個交點之間的距離為,且這兩個交點與拋物線的頂點是拋物線的內接格點三角形的三個頂點,則滿足上述條件且對稱軸平行于y軸的拋物線條數是( )
A.16
B.15
C.14
D.13

查看答案和解析>>

科目:初中數學 來源:2012年山東省德州市育英中學中考數學模擬試卷(三)(解析版) 題型:解答題

(1)如圖1,已知∠AOB,OA=OB,點E在OB邊上,四邊形AEBF是平行四邊形,請你只用無刻度的直尺在圖中畫出∠AOB的平分線;(保留作圖痕跡,不要求寫作法)
(2)如圖2,在10×10的正方形網格中,點A(0,0)、B(5,0)、C(3,6)、D(-1,3),
①依次連接A、B、C、D四點得到四邊形ABCD,四邊形ABCD的形狀是______;
②在x軸上找一點P,使得△PCD的周長最短(直接畫出圖形,不要求寫作法),此時,點P的坐標為______,最短周長為______

查看答案和解析>>

科目:初中數學 來源:2009年遼寧省沈陽市和平區(qū)中考數學監(jiān)測卷(二)(解析版) 題型:解答題

如圖,在10×10的正方形網格中△ABC與△DEF的頂點,都在邊長為1 的小正方形頂點上,且點A與原點重合.
(1)畫出△ABC關于點B為對稱中心的中心對稱圖形△A′BC′,畫出將△DEF向右平移6個單位且向上平移2個單位的△D′E′F′;
(2)求經過A、B、C三點的二次函數關系式,并求出頂點坐標.

查看答案和解析>>

科目:初中數學 來源:2010年浙江省杭州市中考數學模擬試卷(解析版) 題型:解答題

(2010•揚州二模)(1)如圖1,已知∠AOB,OA=OB,點E在OB邊上,四邊形AEBF是平行四邊形,請你只用無刻度的直尺在圖中畫出∠AOB的平分線;(保留作圖痕跡,不要求寫作法)
(2)如圖2,在10×10的正方形網格中,點A(0,0)、B(5,0)、C(3,6)、D(-1,3),
①依次連接A、B、C、D四點得到四邊形ABCD,四邊形ABCD的形狀是______;
②在x軸上找一點P,使得△PCD的周長最短(直接畫出圖形,不要求寫作法),此時,點P的坐標為______,最短周長為______

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省無錫市北片區(qū)中考數學一模試卷(解析版) 題型:解答題

(2010•揚州二模)(1)如圖1,已知∠AOB,OA=OB,點E在OB邊上,四邊形AEBF是平行四邊形,請你只用無刻度的直尺在圖中畫出∠AOB的平分線;(保留作圖痕跡,不要求寫作法)
(2)如圖2,在10×10的正方形網格中,點A(0,0)、B(5,0)、C(3,6)、D(-1,3),
①依次連接A、B、C、D四點得到四邊形ABCD,四邊形ABCD的形狀是______;
②在x軸上找一點P,使得△PCD的周長最短(直接畫出圖形,不要求寫作法),此時,點P的坐標為______,最短周長為______

查看答案和解析>>

同步練習冊答案