【題目】如圖,在△ABC中AB=AC,△AED中AE=AD,∠EAD=∠BAC,AC與BD交于點(diǎn)O.
(1)試確定∠ADC與∠AEB間的數(shù)量關(guān)系,并說明理由;
(2)若∠ACB=65°,求∠BDC的度數(shù).
【答案】(1)∠ADC=∠AEB,理由見解析;(2)50°
【解析】
(1)根據(jù)全等三角形的判定和性質(zhì)證明即可;
(2)利用三角形的外角性質(zhì)和三角形的內(nèi)角和解答即可.
解:(1)∠ADC=∠AEB,理由如下:
∵∠BAC=∠EAD
∴∠BAC﹣∠EAC=∠EAD﹣∠EAC
即:∠BAE=∠CAD
在△ABE和△ACD中
∴△ABE≌△ACD(SAS)
∴∠ADC=∠AEB
(2)∵∠BOC是△ABO和△DCO的外角
∴∠BOC=∠ABD+∠BAC,∠BOC=∠ACD+∠BDC
∴∠ABD+∠BAC=∠ACD+∠BDC
∵∠ABD=∠ACD
∴∠BAC=∠BDC
∵∠ACB=65°,AB=AC
∴∠ABC=∠ACB=65°
∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣65°=50°
∴∠BDC=∠BAC=50°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,小明發(fā)現(xiàn):線段與線段存在一種特殊關(guān)系,即其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可以得到另一條線段,你認(rèn)為這個(gè)旋轉(zhuǎn)中心的坐標(biāo)是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一座拱橋的輪廓是拋物線型(如圖1所示),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.
(1)將拋物線放在所給的直角坐標(biāo)系中(如圖2所示),其表達(dá)式是y=ax2+c的形式.請(qǐng)根據(jù)所給的數(shù)據(jù)求出a,c的值.
(2)求支柱MN的長(zhǎng)度.
(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計(jì))?請(qǐng)說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示.下列結(jié)論:①方程=ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3:②a﹣b+c=0;③8a+c<0;④當(dāng)y>0時(shí),x的取值范圍是﹣1<x<3;⑤當(dāng)y隨x的增大而增大時(shí),一定有x<O.其中結(jié)論正確的個(gè)數(shù)是( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:
①abc>0,
②a﹣b+c<0,
③2a=b,
④4a+2b+c>0,
⑤若點(diǎn)(﹣2,)和(,)在該圖象上,則.
其中正確的結(jié)論是 (填入正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于A,B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,直線y=x﹣2經(jīng)過A,C兩點(diǎn),拋物線的頂點(diǎn)為D.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)在直線AC上方的拋物線上存在一點(diǎn)P,使△PAC的面積最大,請(qǐng)直接寫出P點(diǎn)坐標(biāo)及△PAC面積的最大值;
(3)在y軸上是否存在一點(diǎn)G,使得GD+GB的值最。咳舸嬖,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=45°,過點(diǎn)A作AD⊥BC于點(diǎn)D,點(diǎn)E為AD上一點(diǎn),且ED=BD.
(1)求證:△ABD≌△CED;
(2)若CE為∠ACD的角平分線,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】制文中學(xué)2019年秋季在政大商場(chǎng)購進(jìn)了、兩種品牌的冰鞋,購買品牌冰鞋花費(fèi)了元,購買品牌冰鞋花費(fèi)了元,且購買品牌冰鞋的數(shù)量是購買品牌冰鞋數(shù)量的倍,已知購買一雙品牌冰鞋比購買一雙品牌冰鞋多花元.
(1)求購買一雙品牌,一雙品牌的冰鞋各需多少元?
(2)為開展好“冰雪進(jìn)校園”活動(dòng),制文中學(xué)決定再次購買兩種品牌冰鞋共雙,如果這所中學(xué)這次購買、兩種品牌冰鞋的總費(fèi)用不超過元,那么制文中學(xué)最多購買多少雙品牌冰鞋?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某小組同學(xué)為了測(cè)量對(duì)面樓AB的高度,分工合作,有的組員測(cè)得兩樓間距離為40米,有的組員在教室窗戶處測(cè)得樓頂端A的仰角為30°,底端B的俯角為10°,請(qǐng)你根據(jù)以上數(shù)據(jù),求出樓AB的高度.(精確到0.1米)
(參考數(shù)據(jù):sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, ≈1.41, ≈1.73)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com