【題目】如圖,在由邊長為1的小正方形組成的5×6的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要求解決下列問題:
(1)通過計算判斷△ABC的形狀;
(2)在圖中確定一個格點D,連接AD、CD,使四邊形ABCD為平行四邊形,并求出 □ABCD的面積.
【答案】(1)△ABC是直角三角形;(2)□ABCD的面積為10.
【解析】
試題(1)在Rt△AEB中根據(jù)勾股定理求出AB的長,同理,根據(jù)勾股定理求出BC、AC的長,然后利用勾股定理的逆定理即可判斷△ABC為直角三角形;
(2)根據(jù)兩組對邊分別平行的四邊形是平行四邊形可得過點A作AD∥BC,過點C作CD∥AB,直線AD和CD的交點就是D的位置.根據(jù)平行四邊形ABCD的面積為△ABC面積的2倍即可得出平行四邊形的面積.
試題解析:
解:(1)由題意可得,AB==,AC==2,BC==5,
∵()2+(2)2=25=52,即AB2+AC2=BC2,
∴△ABC是直角三角形;
(2)過點A作AD∥BC,過點C作CD∥AB,直線AD和CD的交點就是D的位置,格點D的位置如圖,
∴平行四邊形ABCD的面積為:AB×AC=×2=10.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=﹣ [(x﹣2)2+n]與x軸交于點A(m﹣2,0)和B(2m+3,0)(點A在點B的左側),與y軸交于點C,連結BC.
(1)求m、n的值;
(2)如圖2,點N為拋物線上的一動點,且位于直線BC上方,連接CN、BN.求△NBC面積的最大值;
(3)如圖3,點M、P分別為線段BC和線段OB上的動點,連接PM、PC,是否存在這樣的點P,使△PCM為等腰三角形,△PMB為直角三角形同時成立?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點E在CD邊上,點F在DC延長線上,AE=BF.
(1)求證:四邊形ABFE是平行四邊形;
(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動物實驗,首次用于臨床人體試驗,測得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時間x小時之間函數(shù)關系如圖所示(當4≤x≤10時,y與x成反比例).
(1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段y與x之間的函數(shù)關系式.
(2)問血液中藥物濃度不低于4微克/毫升的持續(xù)時間多少小時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一副秋千架,左圖是從正面看,當秋千繩子自然下垂時,踏板離地面0.5m(踏板厚度忽略不計), 右圖是從側面看,當秋千踏板蕩起至點B位置時,點B離地面垂直高度BC為1m,離秋千支柱AD的水平距離BE為1.5m(不考慮支柱的直徑).求秋千支柱AD的高.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點E、F在四邊形ABCD的對角線BD所在的直線上,且BE=DF,AE∥CF,請再添加一個條件(不要在圖中再增加其它線段和字母),能證明四邊形ABCD是平行四邊形,并證明你的想法.
你所添加的條件:____________________________________;
證明:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AD∥BC,AB=4cm,BC=8cm,動點M從點D出發(fā),按折線DCBAD方向以2cm/s的速度運動,動點N從點D出發(fā),按折線DABCD方向以1cm/s的速度運動.
(1)若動點M、N同時出發(fā),經(jīng)過幾秒鐘兩點相遇?
(2)若點E在線段BC上,且BE=3cm,若動點M、N同時出發(fā),相遇時停止運動,經(jīng)過幾秒鐘,點A、E、M、N組成平行四邊形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自學下面材料后,解答問題.
分母中含有未知數(shù)的不等式叫分式不等式.如:;等.那么如何求出它們的解集呢?根據(jù)我們學過的有理數(shù)除法法則可知:兩數(shù)相除,同號得正,異號得負.其字母表達式為:
(1)若>0,>0,則>0;若<0,<0,則>0;
(2)若>0,<0,則<0;若<0,>0,則<0.
反之:(1)若>0,則或
(2)若<0,則__________或__________.
(3)根據(jù)上述規(guī)律,求不等式的解集.
(4)試求不等式的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com