【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點(diǎn)分別在軸和軸的正半軸上,頂點(diǎn)的坐標(biāo)為(4,2),的垂直平分線分別交于點(diǎn),過點(diǎn)的反比例函數(shù)的圖像交于點(diǎn).
(1)求反比例函數(shù)的表示式;
(2)判斷與的位置關(guān)系,并說明理由;
(3)連接,在反比例函數(shù)圖像上存在點(diǎn),使,直接寫出點(diǎn)的坐標(biāo).
【答案】(1)反比例函數(shù)表達(dá)式為;(2),證明見解析;(3).
【解析】
(1)求出點(diǎn)橫坐標(biāo),也就是.由垂直平分,得到,,
,在,,求出,從而求出.
(2)方法一:通過邊長關(guān)系可證,為公共角,從而,,;
方法二:求出直線與直線的解析式,系數(shù)相等,所以
方法三: 延長交軸于點(diǎn),證明,四邊形是平行四邊形, .
(3)求出,根據(jù),設(shè),代入點(diǎn)坐標(biāo),求得,與聯(lián)立,求出的坐標(biāo).
(1)連接,
∵垂直平分,∴.
∵,∴.
設(shè),則,
∵四邊形矩形,
∴,.
在中,
.即 .解得.
∴點(diǎn).
將點(diǎn)的坐標(biāo)代入中,得.
∴所求反比例函數(shù)表達(dá)式為.
(2).
方法一:將代入得,,∴點(diǎn).
∵,,,,
∴,,,.
∴,.
∴.
∵,
∴.
∴.
∴.
方法二:將代入得,,∴點(diǎn).
由(1)知,,.
設(shè)直線的函數(shù)表達(dá)式為,∵點(diǎn)在直線上,∴,∴.
∴設(shè)直線的函數(shù)表達(dá)式為.
設(shè)直線的函數(shù)表達(dá)式為,∵點(diǎn)在直線上,
∴ 解得
∴直線的函數(shù)表達(dá)式為.
∵直線與直線的值為,∴直線與直線平行.
∴.
方法三:延長交軸于點(diǎn),
設(shè)直線的函數(shù)表達(dá)式為,∵點(diǎn)在直線上,
∴ 解得
∴直線的函數(shù)表達(dá)式為.
將代入中,得.∴點(diǎn).
∴,.
∴.
∵四邊形矩形,
∴.
∴四邊形是平行四邊形.
∴.
(3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”黃金周期間,我市享有“江南八達(dá)嶺”美譽(yù)的江南長城旅游區(qū),為吸引游客組團(tuán)來此旅游,特推出了如下門票收費(fèi)標(biāo)準(zhǔn):
標(biāo)準(zhǔn)一:如果人數(shù)不超過20人,門票價格60元/人;
標(biāo)準(zhǔn)二:如果人數(shù)超過20人,每超過1人,門票價格降低2元,但門票價格不低于50元/人.
(1)若某單位組織23名員工去江南長城旅游區(qū)旅游,購買門票共需費(fèi)用多少元?
(2)若某單位共支付江南長城旅游區(qū)門票費(fèi)用共計1232元,試求該單位這次共有多少名員工去江南長城旅游區(qū)旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(-2,3)關(guān)于y軸的對稱點(diǎn)為點(diǎn)B,連接AB,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)B,過點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)P是該反比例函數(shù)圖象上任意一點(diǎn).
(1)求k的值;
(2)若△ABP的面積等于2,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在斜坡的頂部有一鐵塔AB,B是CD的中點(diǎn),CD是水平的,在陽光的照射下,塔影DE留在坡面上.已知鐵塔底座寬CD=12 m,塔影長DE=24 m,小明和小華的身高都是1.6 m,同一時刻,小明站在點(diǎn)E處,影子在坡面上,小華站在平地上,影子也在平地上,兩人的影長分別為2 m和1 m,那么塔高AB為________ m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以的邊上一點(diǎn)為圓心的圓,經(jīng)過,兩點(diǎn),且與邊交于點(diǎn),為弧的中點(diǎn),連接交于,,連接.
(1)求證:是的切線;
(2)已知的半徑,,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形,是動點(diǎn),邊長為4, ,則下列結(jié)論正確的有幾個( )
①; ②為等邊三角形
③ ④若,則
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖,分別以△ABC的兩邊AB和AC為邊向外作正方形ANMB和正方形ACDE,NC、BE交于點(diǎn)P.
求證:∠ANC=∠ABE.
應(yīng)用:Q是線段BC的中點(diǎn),若BC=6,則PQ= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年非洲豬瘟疫情暴發(fā)后,今年豬肉價格不斷走高,引起了民眾與政府的高度關(guān)注,據(jù)統(tǒng)計:今年7月20日豬肉價格比今年年初上漲了60%,某市民今年7月20日在某超市購買1千克豬肉花了80元錢.
(1)問:今年年初豬肉的價格為每千克多少元?
(2)某超市將進(jìn)貨價為每千克65元的豬肉,按7月20日價格出售,平均一天能銷售出100千克,經(jīng)調(diào)查表明:豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實(shí)現(xiàn)銷售豬內(nèi)每天有1560元的利潤,并且可能讓顧客得到實(shí)惠,豬肉的售價應(yīng)該下降多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點(diǎn)A作AC∥x軸交拋物線于點(diǎn)C,∠AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個動點(diǎn),設(shè)其橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)若動點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時,四邊形AOPE面積最大,并求出其最大值;
(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使△POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com