【題目】如圖,矩形ABCD中,F(xiàn) 是DC上一點,BF⊥AC,垂足為 E,=,△CEF的面積為S1 , △AEB的面積為S2 , 則的值等于

【答案】
【解析】∵=,∴設AD=BC=a,則AB=CD=2a,∴AC=a,∵BF⊥AC,∴△CBE∽△CAB,△AEB∽△ABC,∴BC2=CECA,AB2=AEAC
∴a2=CEa,2a2=AEa,∴CE=,AE=,∴=,∵△CEF∽△AEB,∴=(2=,所以答案是:
【考點精析】掌握矩形的性質(zhì)和相似三角形的判定與性質(zhì)是解答本題的根本,需要知道矩形的四個角都是直角,矩形的對角線相等;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低.若該果園每棵果樹產(chǎn)果y(千克),增種果樹x(棵),它們之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?
(3)當增種果樹多少棵時,果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要在寬為36m的公路的綠化帶MN(寬為4m)的中央安裝路燈,路燈的燈臂AD的長為3m,且與燈柱CD成120°(如圖所示),路燈采用圓錐形燈罩,燈罩的軸線AB與燈臂垂直.當燈罩的軸線通過公路路面一側(cè)的中間時(除去綠化帶的路面部分),照明效果最理想,問:應設計多高的燈柱,才能取得最理想的照明效果?(精確到0.01m,參考數(shù)據(jù) ≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,CD是高,CE是中線,CE=CB,點A、D關(guān)于點F對稱,過點F作FG∥CD,交AC邊于點G,連接GE.AC=18,BC=12,則△CEG的周長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=x2+(1﹣m)x﹣m(其中0<m<1)的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,對稱軸為直線l.設P為對稱軸l上的點,連接PA、PC,PA=PC

(1)∠ABC的度數(shù)為
(2)求P點坐標(用含m的代數(shù)式表示)
(3)在坐標軸上是否存在著點Q(與原點O不重合),使得以Q、B、C為頂點的三角形與△PAC相似,且線段PQ的長度最小?如果存在,求出所有滿足條件的點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由大小兩種貨車,3輛大車與4輛小車一次可以運貨22噸,2輛大車與6輛小車一次可以運貨23噸.請根據(jù)以上信息,提出一個能用方程(組)解決的問題,并寫出這個問題的解答過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,過點D作⊙O的切線BC于點M,切點為N,則DM的長為( 。

A.
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,且OE=OD,則AP的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,并解決相關(guān)的問題.
按照一定順序排列著的一列數(shù)稱為數(shù)列,排在第一位的數(shù)稱為第1項,記為a1 , 依此類推,排在第n位的數(shù)稱為第n項,記為an
一般地,如果一個數(shù)列從第二項起,每一項與它前一項的比等于同一個常數(shù),那么這個數(shù)列叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0).如:數(shù)列1,3,9,27,…為等比數(shù)列,其中a1=1,公比為q=3.
(1)等比數(shù)列3,6,12,…的公比q為 ,第4項是
(2)如果一個數(shù)列a1 , a2 , a3 , a4 , …是等比數(shù)列,且公比為q,那么根據(jù)定義可得到:=q,=q,=q,…=q.
所以:a2=a1q,a3=a2q=(a1q)q=a1q2 , a4=a3q=(a1q2)q=a1q3 , …
由此可得:an=(用a1和q的代數(shù)式表示).
(3)若一等比數(shù)列的公比q=2,第2項是10,請求它的第1項與第4項.

查看答案和解析>>

同步練習冊答案