精英家教網 > 初中數學 > 題目詳情

【題目】四邊形ABCD中,AC平分∠BADCEABE,∠ADC+CBE=180°,求證:2AE=AB+AD.

【答案】見解析

【解析】

CCFADF,由條件可證△AFC≌△AEC,得到CF=CE.再由條件∠ADC+CBE=180°,證△CDF≌△CEB,由全等的性質可得DF=EB,再由線段和差可得.

證明:過CCFADF,

AC平分∠BAD,

∴∠FAC=EAC

CEAB,CFAD,

∴∠DFC=CEB=CEA=90°,

AC=AC

∴△AFC≌△AEC,

AF=AECF=CE,

∵∠ADC+CBE=180°,∠ADC+FDC=180°

∴∠FDC=CBE,

∴△FDC≌△EBC

DF=EB,

AB+AD=AE+EB+AD=AE+DF+AD=AF+AE=2AE

2AE=AB+AD.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,若AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD=________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AEBC于點EAFCD于點F,若∠EAF=60°,BE=2cm,FD=3cm,則平行四邊形ABCD的面積為________________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某同學將父母給的零用錢按每月相等的數額存放在儲蓄盒內,準備捐給希望工程.盒內錢數y(元)與存錢月數x(月)之間的函數關系如圖所示.觀察圖像回答下列問題:

(1)盒內原來有多少元?2個月后盒內有多少元?

(2)該同學經過幾個月才能存夠200元?

(3)該同學至少存幾個月存款才能超過140元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為EBF∥ACED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結論:①DE=DF②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結論共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P是等邊三角形外一點,把BP繞點B順時針旋轉60°到,已知=150°,,則的值是(

A. : 1 B. 2 : 1 C. : 2 D. : 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,已知ABCD,ADAB,AD=2,AB+CD=4,點EBC的中點.

1)求四邊形ABCD的面積;

2)若AEBC,求CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖A、D、B、E在同一直線上,AC=EF,AD=BE,∠A=∠E,

(1)求證:△ABC≌△EDF;

(2)當∠CHD=120°,猜想△HDB的形狀,并說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向的B處,求此時輪船所在的B處與燈塔P的距離.(參考數據:≈2.449,結果保留整數)

查看答案和解析>>

同步練習冊答案