【題目】在△ABC中,∠ACB90°ACBC,DAB的中點(diǎn),點(diǎn)EAC延長(zhǎng)線(xiàn)上一點(diǎn),連接DE,過(guò)點(diǎn)DDFDECB的延長(zhǎng)線(xiàn)于點(diǎn)F

1)求證:BFCE

2)若CEAC,用等式表示線(xiàn)段DFAB的數(shù)量關(guān)系,并證明.

【答案】(1)詳見(jiàn)解析;(2)DFAB

【解析】

1)連接DC,由等腰直角ABC的中線(xiàn)得CD=BD;等腰直角ABC頂角平分線(xiàn)和底角,∠ABC與∠ABF互為鄰補(bǔ)角,由∠BCE=90°,∠DCB=45°,計(jì)算出∠DBF=DCB=135°;∠CHE+E=90°;∠CHE=DHF等量代換得∠F=E,從而證明DBF≌△DCE,最后根據(jù)全等三角形的性質(zhì)求BF=CE
2)連接BE,在DCE中,點(diǎn)DC分別是ABAE的中點(diǎn),得到DCBE,在(1)基礎(chǔ)上易證∠ABE=90°AB=BE.計(jì)算出線(xiàn)段DE的長(zhǎng)度與線(xiàn)段AB的關(guān)系,即求出線(xiàn)段DF與線(xiàn)段AB的關(guān)系.

1)連接CD,DECF相交于點(diǎn)H,如圖1所示:

∵在RtABC中,DAB中點(diǎn),

CDBD

又∵ACBC,

DCAB,

∴∠ABC=∠DCB45°

∵∠ACB90°,

∴∠BCE90°,

∵∠ABC+ABF180°,∠DCE=∠DCB+BCE

∴∠DBF180°45°135°,∠DCB90°+45°135°

∴∠DBF=∠DCB,

DFDE,

∴∠DHF+F90°

又∵∠CHE+E90°;∠CHE=∠DHF

∴∠F=∠E,

在△DBF和△DCE

∴△DBF≌△DCEAAS),

BFCE

2)線(xiàn)段DFAB的數(shù)量關(guān)系:DFAB

連接BE,設(shè)ADBDa,則AB2a.如圖2所示

∵△DBF≌△DCE,

DFDE

CEACDADB,

DCBE

又∵∠ADC90°,

∴∠ABE90°,

∵∠A45°,

∴∠AEB45°

ABBE2a,

RtBDE中,由勾股定理得:

DE2DB2+BE2,

DE,

DFa,

DFAB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近幾年購(gòu)物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對(duì)某超市一天內(nèi)購(gòu)買(mǎi)者的支付方式進(jìn)行調(diào)查統(tǒng)計(jì),得到如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

(1)本次一共調(diào)查了多少名購(gòu)買(mǎi)者?

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中A種支付方式所對(duì)應(yīng)的圓心角為   度.

(3)若該超市這一周內(nèi)有1600名購(gòu)買(mǎi)者,請(qǐng)你估計(jì)使用AB兩種支付方式的購(gòu)買(mǎi)者共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,CACB,∠C90°,點(diǎn)DBC的中點(diǎn),將△ABC沿著直線(xiàn)EF折疊,使點(diǎn)A與點(diǎn)D重合,折痕交AB于點(diǎn)E,交AC于點(diǎn)F,那么sinBED的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某經(jīng)銷(xiāo)商經(jīng)銷(xiāo)的冰箱二月份的售價(jià)比一月份每臺(tái)降價(jià)500元,已知賣(mài)出相同數(shù)量的冰箱一月份的銷(xiāo)售額為9萬(wàn)元,二月份的銷(xiāo)售額只有8萬(wàn)元.

(1)二月份冰箱每臺(tái)售價(jià)為多少元?

(2)為了提高利潤(rùn),該經(jīng)銷(xiāo)商計(jì)劃三月份再購(gòu)進(jìn)洗衣機(jī)進(jìn)行銷(xiāo)售,已知洗衣機(jī)每臺(tái)進(jìn)價(jià)為4000元,冰箱每臺(tái)進(jìn)價(jià)為3500元,預(yù)計(jì)用不多于7.6萬(wàn)元的資金購(gòu)進(jìn)這兩種家電共20臺(tái),設(shè)冰箱為y臺(tái)(y≤12),請(qǐng)問(wèn)有幾種進(jìn)貨方案?

(3)三月份為了促銷(xiāo),該經(jīng)銷(xiāo)商決定在二月份售價(jià)的基礎(chǔ)上,每售出一臺(tái)冰箱再返還顧客現(xiàn)金a元,而洗衣機(jī)按每臺(tái)4400元銷(xiāo)售,這種情況下,若(2)中各方案獲得的利潤(rùn)相同,則a應(yīng)取何值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,且AB2CDEAB的中點(diǎn),F是邊BC上的動(dòng)點(diǎn),EFBD相交于點(diǎn)M

(1)求證:△EDM∽△FBM

(2)FBC的中點(diǎn),BD12,求BM的長(zhǎng);

(3)ADBC,BD平分∠ABC,點(diǎn)P是線(xiàn)段BD上的動(dòng)點(diǎn),是否存在點(diǎn)P使DPBPBFCD,若存在,求出∠CPF的度數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,在矩形 ABCD 中,AB8,AD10E CD 邊上一點(diǎn),連接 AE,將矩形 ABCD 沿 AE 折疊,頂點(diǎn) D 恰好落在 BC 邊上點(diǎn) F 處,延長(zhǎng) AE BC 的延長(zhǎng)線(xiàn)于點(diǎn)G

1)求線(xiàn)段 CE 的長(zhǎng);

2)如圖 2,MN 分別是線(xiàn)段 AG,DG 上的動(dòng)點(diǎn)(與端點(diǎn)不重合),且∠DMN=∠DAM, 設(shè) DNx

①求證四邊形 AFGD 為菱形;

②是否存在這樣的點(diǎn) N,使DMN 是直角三角形?若存在,請(qǐng)求出 x 的值;若不存在, 請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,矩形ABCD中,E是AD的中點(diǎn),以點(diǎn)E直角頂點(diǎn)的直角三角形EFG的兩邊EF,EG分別過(guò)點(diǎn)B,C,∠F=30°.

(1)求證:BE=CE

(2)將△EFG繞點(diǎn)E按順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時(shí)停止轉(zhuǎn)動(dòng).若EF,EG分別與AB,BC相交于點(diǎn)M,N.(如圖2)

①求證:△BEM≌△CEN;

②若AB=2,求△BMN面積的最大值;

③當(dāng)旋轉(zhuǎn)停止時(shí),點(diǎn)B恰好在FG上(如圖3),求sin∠EBG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)經(jīng)過(guò)A,BC三點(diǎn).

(1)求拋物線(xiàn)的解析式。

(2)若點(diǎn)M為第三象限內(nèi)拋物線(xiàn)上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.

(3)若點(diǎn)P是拋物線(xiàn)上的動(dòng)點(diǎn),點(diǎn)Q是直線(xiàn)上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫(xiě)出相應(yīng)的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,ABAC,∠BACα,點(diǎn)D、E分別在邊ABAC上,ADAE,連接DC,點(diǎn)F、PG分別為DE、DC、BC的中點(diǎn).

1)觀察猜想:圖1中,線(xiàn)段PFPG的數(shù)量關(guān)系是  ,∠FPG  (用含α的代數(shù)式表示)

2)探究證明:當(dāng)△ADE繞點(diǎn)A旋轉(zhuǎn)到如圖2所示的位置時(shí),小新猜想(1)中的結(jié)論仍然成立,請(qǐng)你證明小新的猜想.

3)拓展延伸:把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD2,AB6,請(qǐng)直接寫(xiě)出PF的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案