【題目】如圖,已知AB為⊙O的直徑,PC切⊙O于C交AB的延長(zhǎng)線于點(diǎn)P,∠CAP=35°,那么∠CPO的度數(shù)等于(  。

A. 15° B. 20° C. 25° D. 30°

【答案】B

【解析】

連接AC,由等腰AOC知∠OAC=OCA=35°,然后根據(jù)圓周角定理求得∠POC=70°;最后由切線的性質(zhì)知POC是直角三角形,在RtPOC中根據(jù)直角三角形的兩個(gè)銳角互余求得,∠CPO=90°-POC=20°

在△AOC中,OA=OC(O的半徑),

∴∠OAC=OCA(等邊對(duì)等角);

又∠CAP=35°

∴∠OCA=35°,∠POC=70°(同弧所對(duì)的圓周角是所對(duì)的圓心角的一半);

又∵PC切⊙OC,

OCBC,

∴∠PCO=90°;

RtPOC中,∠CPO=90°POC(直角三角形的兩個(gè)銳角互余)

∴∠CPO=20°;

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程ax23a+1x+2a+1=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2,且有x1+x2-x1·x2=1-a,求a的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的一邊OAx軸正半軸上,OB2,∠C120°.將菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)75°至第四象限OA′B′C′的位置,則點(diǎn)B′的坐標(biāo)為(

A. 2 B. 2,﹣ C. , D. ,﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+ x+cx軸交于A,B兩點(diǎn),與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣ x﹣4x軸交于點(diǎn)D,點(diǎn)P是拋物線y=ax2+x+c上的一動(dòng)點(diǎn),過點(diǎn)PPEx軸,垂足為E,交直線l于點(diǎn)F.

(1)試求該拋物線表達(dá)式;

(2)求證:點(diǎn)C在以AD為直徑的圓上;

(3)是否存在點(diǎn)P使得四邊形PCOF是平行四邊形,若存在求出P點(diǎn)的坐標(biāo),不存在請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測(cè)量樹AB的高度,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上,已知紙板的兩條直角邊DE=40cm,EF=20cm,測(cè)得邊DF離地面的高度AC=1.5m,CD=8m,求樹AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4.動(dòng)點(diǎn)O在邊CA上移動(dòng),且⊙O的半徑為2.

(1)若圓心O與點(diǎn)C重合,則⊙O與直線AB________; (2)當(dāng)OC等于________時(shí),⊙O與直線AB相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC中,ACBC10,AB12. BC為直徑作⊙OAB于點(diǎn)D,交AC于點(diǎn)GDFAC,垂足為F,交CB的延長(zhǎng)線于點(diǎn)E.

(1)求證:直線EF是⊙O的切線;

(2)sinE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《如果想毀掉一個(gè)孩子,就給他一部手機(jī)!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機(jī).為了解學(xué)生手機(jī)使用情況,某學(xué)校開展了手機(jī)伴我健康行主題活動(dòng),他們隨機(jī)抽取部分學(xué)生進(jìn)行使用手機(jī)目的每周使用手機(jī)的時(shí)間的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計(jì)圖,已知查資料的人數(shù)是 40人.請(qǐng)你根據(jù)以上信息解答下列問題:

(1)在扇形統(tǒng)計(jì)圖中,玩游戲對(duì)應(yīng)的百分比為______,圓心角度數(shù)是______度;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該校共有學(xué)生2100人,估計(jì)每周使用手機(jī)時(shí)間在2 小時(shí)以上(不含2小時(shí))的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l與⊙O相離,OAl于點(diǎn)A,OA5,OA與⊙O相交于點(diǎn)P,AB與⊙O相切于點(diǎn)BBP的延長(zhǎng)線交直線l于點(diǎn)C.

(1)試判斷線段ABAC的數(shù)量關(guān)系,并說明理由;

(2)若在⊙O上存在點(diǎn)Q,使QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案