把拋物線y=ax2+bx+c的圖象向右平移3個單位,再向下平移2個單位,得到圖象解析式為y=x2-4x+5,則有a=    b=    c=   
【答案】分析:首先拋物線平移時不改變a的值,其中點(diǎn)的坐標(biāo)平移規(guī)律是上加下減,左減右加,利用這個規(guī)律即可得到所求拋物線的頂點(diǎn)坐標(biāo),然后就可以求出拋物線的解析式.
解答:解:∵y=x2-4x+5=x2-4x+4+1=(x-2)2+1,
∴頂點(diǎn)坐標(biāo)為(2,1),
∴向左平移3個單位,再向上平移2個單位,得(-1,3),
則原拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(-1,3),
∵平移不改變a的值,
∴a=1,
∴原拋物線y=ax2+bx+c=(x+1)2+3=x2+2x+4
∴b=2,c=4.
故答案為a=1,b=2,c=4.
點(diǎn)評:此題主要考查了平移規(guī)律,首先根據(jù)平移規(guī)律求出已知拋物線的頂點(diǎn)坐標(biāo),然后求出所求拋物線的頂點(diǎn)坐標(biāo),最后就可以求出原拋物線的解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某校研究性學(xué)習(xí)小組在研究有關(guān)二次函數(shù)及其圖象性質(zhì)的問題時,發(fā)現(xiàn)了兩個重要結(jié)論.一是發(fā)現(xiàn)拋物線y=ax2+2x+3(a≠0),當(dāng)實(shí)數(shù)a變化時,它的頂點(diǎn)都在某條直線上;二是發(fā)現(xiàn)當(dāng)實(shí)數(shù)a變化時,若把拋物線y=ax2+2x+3的頂點(diǎn)的橫坐標(biāo)減少
1
a
,縱坐標(biāo)增加
1
a
,得到A點(diǎn)的坐標(biāo);若把頂點(diǎn)的橫坐標(biāo)增加
1
a
,縱坐標(biāo)增加
1
a
,得到B點(diǎn)的坐標(biāo),則A、B兩點(diǎn)一定仍在拋物線y=ax2+2x+3上.
(1)請你協(xié)助探求出當(dāng)實(shí)數(shù)a變化時,拋物線y=ax2+2x+3的頂點(diǎn)所在直線的解析式;
(2)問題(1)中的直線上有一個點(diǎn)不是該拋物線的頂點(diǎn),你能找出它來嗎?并說明理由;
(3)在他們第二個發(fā)現(xiàn)的啟發(fā)下,運(yùn)用“一般-一特殊-一般”的思想,你還能發(fā)現(xiàn)什么?你能用數(shù)學(xué)語言將你的猜想表述出來嗎?你的猜想能成立嗎?若能成立請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、把拋物線y=ax2+bx+c的圖象向右平移3個單位,再向下平移2個單位,得到圖象解析式為y=x2-4x+5,則有a=
1
b=
2
c=
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把拋物線y=ax2+bx+c的圖象先向右平移3個單位,再向下平移2個單位,所得的圖象的解析式是y=x2-3x+5,則a+b+c=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、把拋物線y=ax2+bx+c先向右平移2個單位,再向下平移5個單位得到拋物線y=x2-2x-2,那么a=
1
,
b=
2
,c=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大港區(qū)一模)把拋物線y=ax2+bx+c的圖象先向右平移4個單位,再向下平移2個單位,所得的圖象的解析式是y=x2-3x+5,則a+b+c的值為( 。

查看答案和解析>>

同步練習(xí)冊答案