【題目】如圖,已知反比例函數(shù)y=(x>0,k是常數(shù))的圖象經(jīng)過點(diǎn)A(1,4),點(diǎn)B(m,n),其中m>1,AM⊥x軸,垂足為M,BN⊥y軸,垂足為N,AM與BN的交點(diǎn)為C.
(1)求出反比例函數(shù)解析式;
(2)求證:△ACB∽△NOM.
(3)延長線段AB,交x軸于點(diǎn)D,若點(diǎn)B恰好為AD的中點(diǎn),求此時(shí)點(diǎn)B的坐標(biāo).
【答案】(1)(2)詳見解析;(3)B(2,2)
【解析】
(1)將點(diǎn)A的坐標(biāo)代入反比例函數(shù)y=(x>0,k是常數(shù))中,即可求得;
(2)由于∠ACB =∠NOM = 90°,所以要證ΔACB∽ΔNOM,只要即可,由已知分別求出和,證明它們相等即可;
(3)由AM⊥x軸求得AM=4,由BN//OD可得,點(diǎn)C是AM的中點(diǎn),則CM=2,則點(diǎn)B的縱坐標(biāo)為2,從而求得點(diǎn)B橫坐標(biāo).
(1)∵反比例函數(shù)y=(x>0,k是常數(shù))的圖象經(jīng)過點(diǎn)A(1,4),
∴k=xy=4,
∴反比例函數(shù)解析式:y=(x>0);
(2) ∵ B(m,n),A(1,4),∴AC = 4–n,BC = m–1,ON = n,OM = 1.
∴=.
∵點(diǎn)B(m,n)在y=上,
∴m= .
∴=m-1.
又∵.
∴.
又∵∠ACB =∠NOM = 90°,
∴ ΔACB∽ΔNOM.
(3) ∵AM⊥x軸,且A(1,4),
∴點(diǎn)C的橫坐標(biāo)1,AM=4,
∵BN//x軸,點(diǎn)B是AD的中點(diǎn),
∴點(diǎn)C是AM的中點(diǎn),
∴CM=2,即點(diǎn)B的縱坐標(biāo)為2,
又∵點(diǎn)B在反比例函數(shù)y=上,
∴點(diǎn)B縱坐標(biāo)為2,
∴點(diǎn)B的坐標(biāo)為(2,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進(jìn)行下去,A11B11C11D11E11F11的邊長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺(tái)的利潤為400元,B型電腦每臺(tái)的利潤為500元.該商店計(jì)劃再一次性購進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)該商店購進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤最大,最大利潤是多少?
(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)a(0<a<200)元,且限定商店最多購進(jìn)A型電腦60臺(tái),若商店保持同種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(3,-2)在反比例函數(shù)的圖像上,則下列各點(diǎn)中,也在反比例函數(shù)圖像上的是( )
A. (3,-3) B. (-2,3) C. (1,6) D. (-2,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料,并解答問題.
材料:將分式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.
解:由分母為﹣x2+1,可設(shè)﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)
∵對(duì)應(yīng)任意x,上述等式均成立,∴,∴a=2,b=1
∴==+=x2+2+這樣,分式被拆分成了一個(gè)整式x2+2與一個(gè)分式的和.
解答:
(1)將分式 拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.
(2)試說明的最小值為8.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是反比例函數(shù)的圖象上的一個(gè)動(dòng)點(diǎn),連接OA,若將線段O A繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段OB,則點(diǎn)B所在圖象的函數(shù)表達(dá)式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點(diǎn)測得D點(diǎn)的仰角∠EAD為45°,在B點(diǎn)測得D點(diǎn)的仰角∠CBD為60°,求這兩座建筑物的高度(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點(diǎn),過點(diǎn)C的直線交AB的延長線于點(diǎn)D,AE⊥DC,垂足為E,F是AE與⊙O的交點(diǎn),AC平分∠BAE,連接OC.
(1)求證:DE是⊙O的切線;
(2)若⊙O半徑為4,∠D=30°,求圖中陰影部分的面積(結(jié)果用含π和根號(hào)的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光華農(nóng)機(jī)租賃公司共有50臺(tái)聯(lián)合收割機(jī),其中甲型20臺(tái),乙型30臺(tái),先將這50臺(tái)聯(lián)合收割機(jī)派往A、B兩地區(qū)收割小麥,其中30臺(tái)派往A地區(qū),20臺(tái)派往B地區(qū).兩地區(qū)與該農(nóng)機(jī)租賃公司商定的每天的租賃價(jià)格見表:
每臺(tái)甲型收割機(jī)的租金 | 每臺(tái)乙型收割機(jī)的租金 | |
A地區(qū) | 1800 | 1600 |
B地區(qū) | 1600 | 1200 |
(1)設(shè)派往A地區(qū)x臺(tái)乙型聯(lián)合收割機(jī),租賃公司這50臺(tái)聯(lián)合收割機(jī)一天獲得的租金為y(元),求y與x間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)若使農(nóng)機(jī)租賃公司這50臺(tái)聯(lián)合收割機(jī)一天獲得的租金總額不低于79 600元,說明有多少種分配方案,并將各種方案設(shè)計(jì)出來;
(3)如果要使這50臺(tái)聯(lián)合收割機(jī)每天獲得的租金最高,請(qǐng)你為光華農(nóng)機(jī)租賃公司提一條合理化建議.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com