【題目】已知:如圖1,點(diǎn)A、O、B依次在直線MN上,現(xiàn)將射線OA繞點(diǎn)O沿順時(shí)針方向以每秒2°的速度旋轉(zhuǎn),同時(shí)射線OB繞點(diǎn)O沿逆時(shí)針方向以每秒4°的速度旋轉(zhuǎn),如圖2,設(shè)旋轉(zhuǎn)時(shí)間為t(0秒≤t≤90秒).
(1)用含t的代數(shù)式表示∠MOA的度數(shù).
(2)在運(yùn)動(dòng)過程中,當(dāng)∠AOB第二次達(dá)到60°時(shí),求t的值.
(3)在旋轉(zhuǎn)過程中是否存在這樣的t,使得射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角(指大于0°而不超過180°的角)的平分線?如果存在,請(qǐng)直接寫出t的值;如果不存在,請(qǐng)說明理由.
【答案】(1)∠MOA=2t,(2)t=40秒時(shí),∠AOB第二次達(dá)到60°;(3)當(dāng)t的值分別為18、22.5、36、60、67.5秒時(shí),射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角的平分線.
【解析】
試題分析:(1)∠AOM的度數(shù)等于OA旋轉(zhuǎn)速度乘以旋轉(zhuǎn)時(shí)間;
(2)當(dāng)∠AOB第二次達(dá)到60°時(shí),射線OB在OA的左側(cè),根據(jù)∠AOM+∠BON﹣∠MON=60°列方程求解可得;
(3)射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角的平分線有三種情況:
①OB兩次平分∠AOM時(shí),根據(jù)∠AOM=∠BOM,列方程求解,
②OB兩次平分∠MON時(shí),根據(jù)∠BOM=∠MON,列方程求解,
③OB平分∠AON時(shí),根據(jù)∠BON=∠AON,列方程求解.
解:(1)∠MOA=2t,
(2)如圖,
根據(jù)題意知:∠AOM=2t,∠BON=4t,
當(dāng)∠AOB第二次達(dá)到60°時(shí),∠AOM+∠BON﹣∠MON=60°,
即2t+4t﹣180=60,解得:t=40,
故t=40秒時(shí),∠AOB第二次達(dá)到60°;
(3)射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角的平分線有以下三種情況:
①OB平分∠AOM時(shí),∵∠AOM=∠BOM,
∴t=180﹣4t,或t=4t﹣180,
解得:t=36或t=60;
②OB平分∠MON時(shí),∵∠BOM=∠MON,即∠BOM=90°,
∴4t=90,或4t﹣180=90,
解得:t=22.5,或t=67.5;
③OB平分∠AON時(shí),∵∠BON=∠AON,
∴4t=(180﹣2t),或180﹣(4t﹣180)=(180﹣2t),
解得:t=18或t=90(不符合題意,舍去);
綜上,當(dāng)t的值分別為18、22.5、36、60、67.5秒時(shí),射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角的平分線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校準(zhǔn)備新建一個(gè)長度為L的讀書長廊,并準(zhǔn)備用若干塊帶有花紋和沒有花紋的兩種規(guī)格大小相同的正方形地面磚搭配在一起,按圖中所示的規(guī)律拼成圖案鋪滿長廊,已知每個(gè)小正方形地面磚的邊長均為0.3m.
(1)按圖示規(guī)律,第一圖案的長度L1= ;第二個(gè)圖案的長度L2= ;
(2)請(qǐng)用代數(shù)式表示帶有花紋的地面磚塊數(shù)n與走廊的長度Ln(m)之間的關(guān)系;
(2)當(dāng)走廊的長度L為30.3m時(shí),請(qǐng)計(jì)算出所需帶有花紋圖案的瓷磚的塊數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】肥皂泡的泡壁厚度大約是0.0007mm,0.0007用科學(xué)記數(shù)法表示為( )
A.0.7×10﹣3 B.7×10﹣3 C.7×10﹣4 D.7×10﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(2,﹣3)關(guān)于x軸的對(duì)稱點(diǎn)是__________,關(guān)于y軸的對(duì)稱點(diǎn)是__________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面的內(nèi)容,再解決問題,
例題:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0
∴m=﹣3,n=3
問題(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.
(2)已知a,b,c是△ABC的三邊長,滿足a2+b2=10a+8b﹣41,且c是△ABC中最長的邊,求c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某地下商業(yè)街的入口,數(shù)學(xué)課外興趣小組的同學(xué)打算運(yùn)用所學(xué)的知識(shí)測量側(cè)面支架的最高點(diǎn)E到地面的距離EF.經(jīng)測量,支架的立柱BC與地面垂直,即∠BCA=90°,且BC=1.5m,點(diǎn)F、A、C在同一條水平線上,斜桿AB與水平線AC的夾角∠BAC=30°,支撐桿DE⊥AB于點(diǎn)D,該支架的邊BE與AB的夾角∠EBD=60°,又測得AD=1m.請(qǐng)你求出該支架的邊BE及頂端E到地面的距離EF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜基地三天的總產(chǎn)量是8390千克,第二天比第一天多產(chǎn)560千克,第三天比第一天的多1200千克.問三天各產(chǎn)多少千克蔬菜?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,AD⊥BC于D,若AB=4cm,AD=2cm,E為AB的中點(diǎn),P為AD上一點(diǎn),PE+PB的最小值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com