正三角形的內(nèi)切圓的面積與外接圓的面積之比是( )
A.1:5
B.1:4
C.1:3
D.1:2
【答案】分析:首先根據(jù)題意作圖,易得點O即是△ABC的外心,又是⊙O的內(nèi)心,且外接圓的半徑為OB,內(nèi)接圓的半徑為OD,AD⊥BC,然后由直角三角形的性質(zhì),得到OD=OB,繼而求得答案.
解答:解:如圖,△ABC為等邊三角形,AD為角平分線,⊙O為△ABC的內(nèi)切圓,連OB,如圖,
∵△ABC為等邊三角形,⊙O為△ABC的內(nèi)切圓,
∴點O即是△ABC的外心,又是⊙O的內(nèi)心,且外接圓的半徑為OB,內(nèi)接圓的半徑為OD,AD⊥BC,
∴∠OBC=30°,
在Rt△OBD中,OD=OB,
∴正三角形的內(nèi)切圓的面積與外接圓的面積之比是:πOD2:πOB2=1:4.
故選B.
點評:此題考查了三角形的內(nèi)切圓與外接圓的性質(zhì)以及等邊三角形的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料并解答問題:
與正三角形各邊都相切的圓叫做正三角形的內(nèi)切圓,與正四邊形各邊都相切的圓叫做正四邊形的內(nèi)切圓,…,與正n邊形各邊都相切的圓叫做正n邊形的內(nèi)切圓,設(shè)正n(n≥3)邊形的面積為S正n邊形,其內(nèi)切圓的半徑為r,試探索正n邊形的面積.(結(jié)果可用三角函數(shù)表示)
如圖①,當(dāng)n=3時,設(shè)AB切圓O于點C,連接OC,OA,OB,∴OC⊥AB,OA=OB,∴∠AOC=
1
2
AOB
,AB=2BC.
在Rt△AOC中,∵∠AOC=
1
2
360°
3
=60°
,OC=r,∴AC=r•tan60°,AB=2r•tan60°,∴S△OAB=
1
2
•r•2rtan60°=r2tan60°
,∴S正三角形=3S△OAB=3r2•tan60°.
(1)如圖②,當(dāng)n=4時,仿照(1)中的方法和過程可求得:S正四邊形=
 
;
(2)如圖③,當(dāng)n=5時,仿照(1)中的方法和過程求S正五邊形;
(3)如圖④,根據(jù)以上探索過程,請直接寫出S正n邊形=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•江西)正三角形的內(nèi)切圓的面積與外接圓的面積之比是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀材料并解答問題:
與正三角形各邊都相切的圓叫做正三角形的內(nèi)切圓,與正四邊形各邊都相切的圓叫做正四邊形的內(nèi)切圓,…,與正n邊形各邊都相切的圓叫做正n邊形的內(nèi)切圓,設(shè)正n(n≥3)邊形的面積為S正n邊形,其內(nèi)切圓的半徑為r,試探索正n邊形的面積.(結(jié)果可用三角函數(shù)表示)
如圖①,當(dāng)n=3時,設(shè)AB切圓O于點C,連接OC,OA,OB,∴OC⊥AB,OA=OB,∴數(shù)學(xué)公式,AB=2BC.
在Rt△AOC中,∵數(shù)學(xué)公式,OC=r,∴AC=r•tan60°,AB=2r•tan60°,∴數(shù)學(xué)公式,∴S正三角形=3S△OAB=3r2•tan60°.
(1)如圖②,當(dāng)n=4時,仿照(1)中的方法和過程可求得:S正四邊形=______;
(2)如圖③,當(dāng)n=5時,仿照(1)中的方法和過程求S正五邊形;
(3)如圖④,根據(jù)以上探索過程,請直接寫出S正n邊形=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年黑龍江省大慶市三十一中中考數(shù)學(xué)模擬試卷(六)(解析版) 題型:解答題

閱讀材料并解答問題:
與正三角形各邊都相切的圓叫做正三角形的內(nèi)切圓,與正四邊形各邊都相切的圓叫做正四邊形的內(nèi)切圓,…,與正n邊形各邊都相切的圓叫做正n邊形的內(nèi)切圓,設(shè)正n(n≥3)邊形的面積為S正n邊形,其內(nèi)切圓的半徑為r,試探索正n邊形的面積.(結(jié)果可用三角函數(shù)表示)
如圖①,當(dāng)n=3時,設(shè)AB切圓O于點C,連接OC,OA,OB,∴OC⊥AB,OA=OB,∴,AB=2BC.
在Rt△AOC中,∵,OC=r,∴AC=r•tan60°,AB=2r•tan60°,∴,∴S正三角形=3S△OAB=3r2•tan60°.
(1)如圖②,當(dāng)n=4時,仿照(1)中的方法和過程可求得:S正四邊形=______;
(2)如圖③,當(dāng)n=5時,仿照(1)中的方法和過程求S正五邊形
(3)如圖④,根據(jù)以上探索過程,請直接寫出S正n邊形=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省汕頭市金平區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

閱讀材料并解答問題:
與正三角形各邊都相切的圓叫做正三角形的內(nèi)切圓,與正四邊形各邊都相切的圓叫做正四邊形的內(nèi)切圓,…,與正n邊形各邊都相切的圓叫做正n邊形的內(nèi)切圓,設(shè)正n(n≥3)邊形的面積為S正n邊形,其內(nèi)切圓的半徑為r,試探索正n邊形的面積.(結(jié)果可用三角函數(shù)表示)
如圖①,當(dāng)n=3時,設(shè)AB切圓O于點C,連接OC,OA,OB,∴OC⊥AB,OA=OB,∴,AB=2BC.
在Rt△AOC中,∵,OC=r,∴AC=r•tan60°,AB=2r•tan60°,∴,∴S正三角形=3S△OAB=3r2•tan60°.
(1)如圖②,當(dāng)n=4時,仿照(1)中的方法和過程可求得:S正四邊形=______;
(2)如圖③,當(dāng)n=5時,仿照(1)中的方法和過程求S正五邊形;
(3)如圖④,根據(jù)以上探索過程,請直接寫出S正n邊形=______.

查看答案和解析>>

同步練習(xí)冊答案