【題目】 已知:點(diǎn)A(2016,0)、B(0,2018),以AB為斜邊在直線AB下方作等腰直角△ABC,則點(diǎn)C的坐標(biāo)為( )
A. (2,2 )B. (2,﹣2 )C. (﹣1,1 )D. (﹣1,﹣1 )
【答案】C
【解析】
過C作CD⊥y軸于點(diǎn)D,作AE⊥CD于點(diǎn)E,易證△ACE≌△BCD,則CD=AE,則C的橫縱坐標(biāo)的絕對值相等,設(shè)C的坐標(biāo)是(x,y),根據(jù)BD=CE列方程進(jìn)行求解即可.
過C作CD⊥y軸于點(diǎn)D,作AE⊥CD于點(diǎn)E,
∵∠BOA=∠BCA=90°,∠OFB=∠CFA,
∴∠DBC=∠FAC,
∵CD⊥y軸,OA⊥y軸,
∴CD∥OA,
∴∠ACE=∠FAC,
∴∠ACE=∠DBC,
∴在△ACE和△BCD中,
,
∴△ACE≌△CBD(AAS),
∴CD=AE,則C的橫縱坐標(biāo)的絕對值相等,BD=CE,
∴設(shè)C的坐標(biāo)是(x,y),則|x|=|y|,且x<2016,y<2018,
又∵BD=CE,
∴2018﹣y=2016﹣x,
則x=﹣1,y=1,
故C的坐標(biāo)是(﹣1,1),
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為α和β,且tanα=6,tanβ=,求燈桿AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某五金商店準(zhǔn)備從機(jī)械廠購進(jìn)甲、乙兩種零件進(jìn)行銷售.若每個(gè)甲種零件的進(jìn)價(jià)比每個(gè)乙種零件的進(jìn)價(jià)少2元,且用900元正好可以購進(jìn)50個(gè)甲種零件和50個(gè)乙種零件.
(1)求每個(gè)甲種零件、每個(gè)乙種零件的進(jìn)價(jià)分別為多少元?
(2)若該五金商店本次購進(jìn)甲種零件的數(shù)量比購進(jìn)乙種零件的數(shù)量的3倍還少5個(gè),購進(jìn)兩種零件的總數(shù)量不超過95個(gè),該五金商店每個(gè)甲種零件的銷售價(jià)格為12元,每個(gè)乙種零件的銷售價(jià)格為15元,則將本次購進(jìn)的甲、乙兩種零件全部售出后,可使銷售兩種零件的總利潤(利潤=售價(jià)-進(jìn)價(jià))超過371元,通過計(jì)算求出該五金商店本次從機(jī)械廠購進(jìn)甲、乙兩種零件有哪幾種方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AD為⊙O的直徑,交BC于點(diǎn)E,若DE=2,OE=3,則tanCtanB=( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為解決中小學(xué)大班額問題,東營市各縣區(qū)今年將改擴(kuò)建部分中小學(xué),某縣計(jì)劃對A、B兩類學(xué)校進(jìn)行改擴(kuò)建,根據(jù)預(yù)算,改擴(kuò)建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬元,改擴(kuò)建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬元.
(1)改擴(kuò)建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬元?
(2)該縣計(jì)劃改擴(kuò)建A、B兩類學(xué)校共10所,改擴(kuò)建資金由國家財(cái)政和地方財(cái)政共同承擔(dān).若國家財(cái)政撥付資金不超過11800萬元;地方財(cái)政投入資金不少于4000萬元,其中地方財(cái)政投入到A、B兩類學(xué)校的改擴(kuò)建資金分別為每所300萬元和500萬元.請問共有哪幾種改擴(kuò)建方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求AB的長;
(2)延長DB到F,使BF=BO,連接FA,請判斷直線FA與⊙O的位置關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,點(diǎn)D、E分別在AB、AC上,,,
求證:;
若,把繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到圖2的位置,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn),連接MN,PM,PN.
判斷的形狀,并說明理由;
把繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若,,試問面積是否存在最大值;若存在,求出其最大值若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,為直徑,C為上一點(diǎn).
(Ⅰ)如圖①,過點(diǎn)C作的切線,與的延長線相交于點(diǎn)P,若,求的大;
(Ⅱ)如圖②,D為弧的中點(diǎn),連接交于點(diǎn)E,連接并延長,與的延長線相交于點(diǎn)P,若,求的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列給出的方程中,屬于一元二次方程的是( )
A. x(x﹣1)=6B. x2+=0C. (x﹣3)(x﹣2)=x2D. ax2+bx+c=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com