【題目】作圖題:⊙O上有三個點A,B,C,∠BAC70°,請畫出要求的角,并標注.

1)畫一個140°的圓心角;(2)畫一個110°的圓周角;(3)畫一個20°的圓周角.

【答案】(1)見解析;(2)見解析;(3)見解析

【解析】

1)根據(jù)∠BAC70°,畫一個140°的圓心角,與∠BAC同弧即可;

2)在劣弧BC上任意取一點P畫一個∠BPC即可得110°的圓周角;

3)過點C畫一條直徑CD,連接AD即可畫一個20°的圓周角.

1)如圖1所示:BOC=2∠BAC140°

∴∠BOC即為140°的圓心角;

2)如圖2所示:BPC=180°-BAC=110°

∴∠BPC即為110°的圓周角;

3)連接CO并延長交圓于點D,連接AD,

∵∠DAC=90°,∴∠BAD=90°-BAC=20°

BAD即為20°的圓周角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.如圖,在ABC中,ABAC,點D,E分別在AB,AC上,設(shè)CD,BE相交于點O,如果∠A是銳角,∠DCB=∠EBCA.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,拋物線經(jīng)過點AB、C,已知A-10),B3,0),C0,-3.

1)求此拋物線的函數(shù)表達式;

2)若P為線段BC上一點,過點P軸的平行線,交拋物線于點D,當△BCD面積最大時,求點P的坐標;

3)若Mm0)是軸上一個動點,請求出CM+MB的最小值以及此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在線段AB上有一點C,AB的同側(cè)作等腰△ACD和等腰△ECB,AC=AD,EC=EB,DAC=CEB,直線BD與線段AE,線段CE分別交于點F,G.對于下列結(jié)論:①△DCG∽△BEG;②△ACE∽△DCB;③GF·GB=GC·GE;④若∠DAC=CEB=90°,2AD2=DF·DG.其中正確的是(

A.①②③④B.①②③C.①③④D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點B的坐標是(-2,0),點C的坐標是(8,0),以線段BC為直徑作⊙A,交y軸的正半軸于點D,過B、C、D三點作拋物線.

1)求拋物線的解析式;

2)連結(jié)BD,CD,點EBD延長線上一點,∠CDE的角平分線DF交⊙A于點F,連結(jié)CF,在直線BE上找一點P,使得△PFC的周長最小,并求出此時點P的坐標;

3)在(2)的條件下,拋物線上是否存在點G,使得∠GFC=DCF,若存在,請直接寫出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑的⊙O分別交AC,BC于點DE,過點BAB的垂線交AC的延長線于點F

1)求證:;

2)過點CCGBFG,若AB5,BC2,求CG,FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y的圖象經(jīng)過點A(4,m),ABx軸,且△AOB的面積為2.

(1)求km的值;

(2)若點C(x,y)也在反比例函數(shù)y的圖象上,當-3≤x≤-1時,求函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,M、N、C三點的坐標分別為(,1),(3,1),(3,0),點A為線段MN上的一個動點,連接AC,過點AABACy軸于點B,當點AM運動到N時,點B隨之運動,設(shè)點B的坐標為(0,b),則b的取值范圍是( 。

A.b1B.b1C.bD.b1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,∠BAC的平分線交⊙O于點D,過點DDEACAC的延長線于點E,連接BD

1)求證:DE是⊙O的切線;

2)若BD3,AD4,則DE

查看答案和解析>>

同步練習(xí)冊答案