【題目】如圖,AD為△ABC的中線,BE為三角形ABD中線,

(1)∠ABE=15°,∠BAD=35°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為60,BD=5,則點(diǎn)E到BC邊的距離為多少?

【答案】
(1)解:∵∠BED是△ABE的一個(gè)外角,

∴∠BED=∠ABE+∠BAD=15°+35°=50°


(2)解:如圖所示,EF即是△BED中BD邊上的高


(3)解:∵AD為△ABC的中線,BE為三角形ABD中線,

∴SBED= SABC= ×60=15;

∵BD=5,

∴EF=2SBED÷BD=2×15÷5=6,

即點(diǎn)E到BC邊的距離為6


【解析】(1)利用三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角之和即可求∠BED的度數(shù);(2)△BED是鈍角三角形,所以BD邊上的高在BD的延長線上;(3)先根據(jù)三角形的中線把三角形分成面積相等的兩個(gè)小三角形,結(jié)合題意可求得△BED的面積,再直接求點(diǎn)E到BC邊的距離即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用水,某市水費(fèi)實(shí)行分段計(jì)費(fèi)制,每戶每月用水量在規(guī)定用量及以下的部分收費(fèi)標(biāo)準(zhǔn)相同,超出規(guī)定用量的部分收費(fèi)標(biāo)準(zhǔn)相同.例如:若規(guī)定用量為10噸,每月用水量不超過10噸按1.5/噸收費(fèi),超出10噸的部分按2/噸收費(fèi),則某戶居民一個(gè)月用水8噸,則應(yīng)繳水費(fèi):8×1.5=12(元);某戶居民一個(gè)月用水13噸,則應(yīng)繳水費(fèi):10×1.5+(13﹣10)×2=21(元).

表是小明家14月份用水量和繳納水費(fèi)情況,根據(jù)表格提供的數(shù)據(jù),回答:

月份

用水量(噸)

6

7

12

15

水費(fèi)(元)

12

14

28

37

(1)該市規(guī)定用水量為   噸,規(guī)定用量內(nèi)的收費(fèi)標(biāo)準(zhǔn)是   /噸,超過部分的收費(fèi)標(biāo)準(zhǔn)是   /噸.

(2)若小明家五月份用水20噸,則應(yīng)繳水費(fèi)   元.

(3)若小明家六月份應(yīng)繳水費(fèi)46元,則六月份他們家的用水量是多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,M為BC邊上的中點(diǎn),D是射線AM上的一個(gè)動(dòng)點(diǎn),以CD為一邊且在CD的下方作等邊△CDE,連接BE.

(1)填空:若D與M重合時(shí)(如圖1)∠CBE=度;
(2)如圖2,當(dāng)點(diǎn)D在線段AM上時(shí)(點(diǎn)D不與A、M重合),請判斷(1)中結(jié)論是否成立?并說明理由;
(3)在(1)的條件下,若AB=6,試求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形的對角線長為20,兩鄰邊之比為3 : 4,則矩形的面積為( )

A. 20 B. 56 C. 192 D. 以上答案都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校計(jì)劃在七年級學(xué)生中開設(shè)4個(gè)信息技術(shù)應(yīng)用興趣班,分別為“無人機(jī)”班,“3D打印”班,“網(wǎng)頁設(shè)計(jì)”班,“電腦繪畫”班,規(guī)定每人最多參加一個(gè)班,自愿報(bào)名.根據(jù)報(bào)名情況繪制了下面統(tǒng)計(jì)圖表,請回答下列問題:

(1)報(bào)名參加興趣班的總?cè)藬?shù)為 人;統(tǒng)計(jì)表中的A= ;

(2)將統(tǒng)計(jì)圖補(bǔ)充完整;

(3)為了均衡班級人數(shù),在“電腦繪畫”班中至少動(dòng)員幾人到“3D打印”班,才能使“電腦繪畫”班人數(shù)不超過“3D打印”班人數(shù)的2倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在□ABCD中,對角線AC與BD相交于點(diǎn)O,過點(diǎn)O作一條直線分別交AB,CD于點(diǎn)E,F(xiàn).

(1)求證:OE=OF;

(2)若AB=6,BC=5,OE=2,求四邊形BCFE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD為△ABC的中線,BE為三角形ABD中線.

(1)在△BED中作BD邊上的高EF;
(2)若△ABC的面積為40,BD=5,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)多邊形的內(nèi)角和等于它的外角和的兩倍,則這個(gè)多邊形的邊數(shù)為( )
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)某工廠為了擴(kuò)大生產(chǎn),決定購買6臺(tái)機(jī)器用于生產(chǎn)零件,現(xiàn)有甲、乙兩種機(jī)器可供選擇.其中甲型機(jī)器每日生產(chǎn)零件106個(gè),乙型機(jī)器每日生產(chǎn)零件60個(gè),經(jīng)調(diào)査,購買3臺(tái)甲型機(jī)器和2臺(tái)乙型機(jī)器共需要31萬元,購買一臺(tái)甲型機(jī)器比購買一臺(tái)乙型機(jī)器多2萬元

(1)求甲、乙兩種機(jī)器每臺(tái)各多少萬元?

(2)如果工廠期買機(jī)器的預(yù)算資金不超過34萬元,那么你認(rèn)為該工廠有哪幾種購買方案?

(3)在(2)的條件下,如果要求該工廠購進(jìn)的6臺(tái)機(jī)器的日產(chǎn)量能力不能低于380個(gè),那么為了節(jié)約資金.應(yīng)該選擇哪種方案?

查看答案和解析>>

同步練習(xí)冊答案