請寫出一個滿足下列條件的一次函數(shù):當(dāng)x=1時,y>0,x=3時,y<0.
y=-x+2(答案不唯一)
y=-x+2(答案不唯一)
分析:根據(jù)一次函數(shù)的性質(zhì),所寫函數(shù)的k值小于0,與x軸的交點在1到3之間即可.
解答:解:函數(shù)y=-x+2滿足當(dāng)x=1時,y>0,x=3時,y<0.
故答案為:y=-x+2(答案不唯一).
點評:本題考查了一次函數(shù)的性質(zhì),熟練掌握一次函數(shù)的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•大興區(qū)一模)閱讀下列材料:
小明遇到一個問題:已知:如圖1,在△ABC中,∠BAC=120°,∠ABC=40°,試過△ABC的一個頂點畫一條直線,將此三角形分割成兩個等腰三角形.
他的做法是:如圖2,首先保留最小角∠C,然后過三角形頂點A畫直線交BC于點D.將∠BAC分成兩個角,使∠DAC=20°,△ABC即可被分割成兩個等腰三角形.
喜歡動腦筋的小明又繼續(xù)探究:當(dāng)三角形內(nèi)角中的兩個角滿足怎樣的數(shù)量關(guān)系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.
他的做法是:如圖3,先畫△ADC,使DA=DC,延長AD到點B,使△BCD也是等腰三角形,如果DC=BC,那么∠CDB=∠ABC,因為∠CDB=2∠A,所以∠ABC=2∠A.于是小明得到了一個結(jié)論:
當(dāng)三角形中有一個角是最小角的2倍時,則此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.
請你參考小明的做法繼續(xù)探究:當(dāng)三角形內(nèi)角中的兩個角滿足怎樣的數(shù)量關(guān)系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.請直接寫出你所探究出的另外兩條結(jié)論(不必寫出探究過程或理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海淀區(qū)一模)問題:如圖1,a、b、c、d是同一平面內(nèi)的一組等距平行線(相鄰平行線間的距離為1).畫出一個正方形ABCD,使它的頂點A、B、C、D分別在直線a、b、d、c上,并計算它的邊長.

小明的思考過程:
他利用圖1中的等距平行線構(gòu)造了3×3的正方形網(wǎng)格,得到了輔助正方形EFGH,如圖2所示,再分別找到它的四條邊的三等分點A、B、C、D,就可以畫出一個滿足題目要求的正方形.
請回答:圖2中正方形ABCD的邊長為
5
5

請參考小明的方法,解決下列問題:
(1)請在圖3的菱形網(wǎng)格(最小的菱形有一個內(nèi)角為60°,邊長為1)中,畫出一個等邊△ABC,使它的頂點A、B、C落在格點上,且分別在直線a、b、c上;
(3)如圖4,l1、l2、l3是同一平面內(nèi)的三條平行線,l1、l2之間的距離是
21
5
,l2、l3之間的距離是
21
10
,等邊△ABC的三個頂點分別在l1、l2、l3上,直接寫出△ABC的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,并回答問題.
畫一個直角三角形,使它的兩條直角邊分別為5和12,那么我們可以量得直角三角形的斜邊長為13,并且52+122=132.事實上,在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方.如果直角三角形中,兩直角邊長分別為a、b,斜邊長為c,則a2+b2=c2,這個結(jié)論就是著名的勾股定理.
請利用這個結(jié)論,完成下面的活動:
(1)一個直角三角形的兩條直角邊分別為6、8,那么這個直角三角形斜邊長為
10
10

(2)滿足勾股定理方程a2+b2=c2的正整數(shù)組(a,b,c)叫勾股數(shù)組.例如(3,4,5)就是一組勾股數(shù)組.觀察下列幾組勾股數(shù)
①3,4,5; ②5,12,13; ③7,24,25;④9,40,41;
請你寫出有以上規(guī)律的第⑤組勾股數(shù):
11,60,61
11,60,61

(3)如圖,AD⊥BC于D,AD=BD,AC=BE.AC=3,DC=1,求BD的長度.

(4)如圖,點A在數(shù)軸上表示的數(shù)是
-
5
-
5
,請用類似的方法在下圖數(shù)軸上畫出表示數(shù)
3
的B點(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:鼎尖助學(xué)系列—同步練習(xí)(數(shù)學(xué) 八年級下冊)、函數(shù)及其圖象 一次函數(shù)的性質(zhì) 題型:022

某函數(shù)具有下列兩條性質(zhì):

①它的圖象是經(jīng)過原點O(0,0)的一條直線;②y值隨x的增大而減小.

請你寫出一個滿足上述兩個條件的函數(shù):________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:云南省期末題 題型:填空題

一個函數(shù)具有下列性質(zhì):①圖像經(jīng)過點(-1,2);②函數(shù)值y隨自變量x的增大而增大.請你寫出一個滿足上述兩條性質(zhì)的函數(shù)解析式可以是(     )(只要求寫一個即可)。

查看答案和解析>>

同步練習(xí)冊答案