(2006•青島)已知△ABC在直角坐標(biāo)系中的位置如圖所示,如果△A′B′C′與△ABC關(guān)于y軸對稱,那么點A的對應(yīng)點A′的坐標(biāo)為( )

A.(-4,2)
B.(-4,-2)
C.(4,-2)
D.(4,2)
【答案】分析:根據(jù)對稱的性質(zhì),在題中標(biāo)示出對稱點的坐標(biāo),然后根據(jù)有關(guān)性質(zhì)即可得出所求點的坐標(biāo).
解答:解:∵軸對稱的性質(zhì),y軸垂直平分線段AA',
∴點A與點A'的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等.點A(-4,2),
∴A'(4,2).
故選D.
點評:本題主要考查如下內(nèi)容:
1、坐標(biāo)平面內(nèi)的點與有序?qū)崝?shù)對是一一對應(yīng)的
2、掌握好對稱的有關(guān)性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2006•青島)已知△ABC在直角坐標(biāo)系中的位置如圖所示,如果△A′B′C′與△ABC關(guān)于y軸對稱,那么點A的對應(yīng)點A′的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年浙教版中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2006•青島)如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.
如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā),以1cm/s的速度在直角邊GF上向點F運動,當(dāng)點P到達點F時,點P停止運動,△EFG也隨之停止平移.設(shè)運動時間為x(s),F(xiàn)G的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).

(1)當(dāng)x為何值時,OP∥AC;
(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省青島市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•青島)如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.
如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā),以1cm/s的速度在直角邊GF上向點F運動,當(dāng)點P到達點F時,點P停止運動,△EFG也隨之停止平移.設(shè)運動時間為x(s),F(xiàn)G的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).

(1)當(dāng)x為何值時,OP∥AC;
(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省青島市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•青島)已知△ABC在直角坐標(biāo)系中的位置如圖所示,如果△A′B′C′與△ABC關(guān)于y軸對稱,那么點A的對應(yīng)點A′的坐標(biāo)為( )

A.(-4,2)
B.(-4,-2)
C.(4,-2)
D.(4,2)

查看答案和解析>>

同步練習(xí)冊答案