如圖,在矩形中,在上,,交于,連結(jié),則圖中與 一定相似的三角形是
A. B. C. D.和
B
【解析】
試題分析:根據(jù)矩形的性質(zhì)可得∠A=∠D=90°,再由根據(jù)同角的余角相等可得∠AEB=∠DFE,即可得到結(jié)果.
∵矩形
∴∠A=∠D=90°
∴∠DEF+∠DFE=90°
∵
∴∠AEB+∠DEF=90°
∴∠AEB=∠DFE
∵∠A=∠D=90°,∠AEB=∠DFE
∴∽
故選B.
考點:矩形的性質(zhì),相似三角形的判定
點評:相似三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考中半徑常見的知識點,一般難度不大,需熟練掌握.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年遼寧省遼陽市高級中等學(xué)校招生考試數(shù)學(xué) 題型:044
定義:我們把三角形被一邊中線分成的兩個三角形叫做“友好三角形”
性質(zhì):如果兩個三角形是“友好三角形”,那么這兩個三角形的面積相等,
理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.
應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點E在AD上,點F在BC上,AE=BF,AF與BE交于點O,
(1)求證:△AOB和△AOE是“友好三角形”;
(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積,
探究:在△ABC中,∠A=30°,AB=4,點D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得到△CD與△ABC重合部分的面積等于△ABC面積的,請直接寫出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆山東省濟南市長清區(qū)九年級學(xué)業(yè)水平模擬考試數(shù)學(xué)試卷(帶解析) 題型:單選題
如圖,在矩形中,在上,,交于,連結(jié),則圖中與 一定相似的三角形是
A. | B. | C. | D.和 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com