【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)A4,0)和點(diǎn)D-1,0),與y軸交于點(diǎn)C,過(guò)點(diǎn)CBC平行于x軸交拋物線于點(diǎn)B,連接AC
1)求這個(gè)二次函數(shù)的表達(dá)式;
2)點(diǎn)M從點(diǎn)O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng);點(diǎn)N從點(diǎn)B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停動(dòng),過(guò)點(diǎn)NNQ垂直于BCAC于點(diǎn)Q,連結(jié)MQ
①求△AQM的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,寫出自變量的取值范圍;當(dāng)t為何值時(shí),S有最大值,并求出S的最大值;
②是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

【答案】1y=-x2+3x+4;(2)①S(t)2+0≤t≤2).當(dāng)t=時(shí),S最大值=;②存在點(diǎn)M,(10)和(20).

【解析】

1)由待定系數(shù)法將AD兩點(diǎn)代入即可求解.
2)①分別用t表示出AM、PQ,由三角形面積公式直接寫出含有t的二次函數(shù)關(guān)系式,由二次函數(shù)的最大值可得答案;
②分類討論直角三角形的直角頂點(diǎn),然后解出t,求得M坐標(biāo).

1)∵二次函數(shù)的圖象經(jīng)過(guò)A40)和點(diǎn)D-1,0),
,
解得
所以,二次函數(shù)的解析式為y=-x2+3x+4
2)①延長(zhǎng)NQx軸于點(diǎn)P

BC平行于x軸,C0,4
B34),NPOA
根據(jù)題意,經(jīng)過(guò)t秒時(shí),NB=t,OM=2t,
CN=3-t,AM=4-2t
∵∠BCA=MAQ=45°,
QN=CN=3-t,
PQ=NP-NQ=4-3-t=1+t,
SAQMAM×PQ (42t)(1+t)
=-t2+t+2
St2+t+2(t)2+
a=-10,且0≤t≤2

S有最大值.
當(dāng)t=時(shí),S最大值=
②存在點(diǎn)M,使得AQM為直角三角形.
設(shè)經(jīng)過(guò)t秒時(shí),NB=t,OM=2t,
CN=3-t,AM=4-2t,
∵∠BCA=MAQ=45°
.若∠AQM=90°,
PQ是等腰RtMQA底邊MA上的高.
PQ是底邊MA的中線,
PQ=AP=MA,
1+t=4-2t),
解得,t=,
M的坐標(biāo)為(1,0).
.若∠QMA=90°,此時(shí)QMQP重合.
QM=QP=MA,
1+t=4-2t,
t=1
∴點(diǎn)M的坐標(biāo)為(2,0).
所以,使得AQM為直角三角形的點(diǎn)M的坐標(biāo)分別為(1,0)和(20).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,ABAC,把△ABCA點(diǎn)沿順時(shí)針?lè)较蛐D(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F

1)求證:△AEC≌△ADB;(2)若AB2,∠BAC45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課外閱讀是提高學(xué)生素養(yǎng)的重要途徑.某中學(xué)為了了解全校學(xué)生課外閱讀情況,隨機(jī)抽查了200名學(xué)生,統(tǒng)計(jì)他們平均每天課外閱讀時(shí)間(小時(shí)).根據(jù)每天課外閱讀時(shí)間的長(zhǎng)短分為A,B,CD四類,下面是根據(jù)所抽查的人數(shù)繪制的兩幅不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖中提供的信息,解答下面的問(wèn)題:

200名學(xué)生平均每天課外閱讀時(shí)間統(tǒng)計(jì)表

類別

時(shí)間t(小時(shí))

人數(shù)

A

t0.5

40

B

0.5≤t1

80

C

1≤t1.5

60

D

t≥1.5

a

1)求表格中a的值,并在圖中補(bǔ)全條形統(tǒng)計(jì)圖:

2)該校現(xiàn)有1800名學(xué)生,請(qǐng)你估計(jì)該校共有多少名學(xué)生課外閱讀時(shí)間不少于1小時(shí)?

3)請(qǐng)你根據(jù)上述信息對(duì)該校提出相應(yīng)的建議

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,以為直徑作圓,分別交于點(diǎn),交的延長(zhǎng)線于點(diǎn),過(guò)點(diǎn)于點(diǎn),連接交線段于點(diǎn)

1)求證:是圓的切線;

2)若的中點(diǎn),求的值;

3)若,求圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在上學(xué)的路上要經(jīng)過(guò)多個(gè)路口,每個(gè)路口都設(shè)有紅、黃、綠三種信號(hào)燈,假設(shè)在各路口遇到信號(hào)燈是相互獨(dú)立的.

(1).如果有2個(gè)路口,求小明在上學(xué)路上到第二個(gè)路口時(shí)第一次遇到紅燈的概率.(請(qǐng)用畫樹狀圖列表等方法寫出分析過(guò)程)

(2).如果有n個(gè)路口,則小明在每個(gè)路口都沒(méi)有遇到紅燈的概率是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)藥研究所進(jìn)行某一治療病毒新藥的開發(fā),經(jīng)過(guò)大量的服用試驗(yàn)后知:成年人按規(guī)定的劑量服用后,每毫克血液中含藥量y微克(1微克=10-3毫克)隨時(shí)間x小時(shí)的變化規(guī)律與某一個(gè)二次函數(shù)y=ax2+bx+c (a≠0)相吻合,并測(cè)得服用時(shí)(即時(shí)間為0時(shí))每毫升血液中含藥量為0微克;服用后2小時(shí)每毫升血液中含藥量為6微克,服用后3小時(shí),每毫升血液中含藥量為7.5微克.

1)求出含藥量y(微克)與服藥時(shí)間x(小時(shí))的函數(shù)關(guān)系式;并畫出0≤x≤8內(nèi)的函數(shù)的圖象的示意圖;

2)求服藥后幾小時(shí)才能使每毫升血液中含藥量最大?并求出血液中的最大含藥量;

3)結(jié)合圖象說(shuō)明一次服藥后的有效時(shí)間是多少小時(shí)?(有效時(shí)間為血液中含藥量不為0的總時(shí)間)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的頂點(diǎn)為,交軸于點(diǎn),(點(diǎn)在點(diǎn)的右側(cè)),點(diǎn)在第一象限,且在拋物線部分上,軸于點(diǎn)

1)求該拋物線的表達(dá)式.

2)若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C=90°,AC=BC=3cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以cm/s的速度沿AB方向運(yùn)動(dòng)到點(diǎn)B.動(dòng)點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度沿折線ACCB方向運(yùn)動(dòng)到點(diǎn)B.設(shè)APQ的面積為y(cm2).運(yùn)動(dòng)時(shí)間為x(s),則下列圖象能反映yx之間關(guān)系的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,,,動(dòng)點(diǎn)點(diǎn)出發(fā)以/秒向終點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)同時(shí)從點(diǎn)出發(fā)以/秒按的方向在邊,,上運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為(秒),那么的面積隨著時(shí)間(秒)變化的函數(shù)圖象大致為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案