【題目】觀察如圖圖形:
它們是按一定規(guī)律排列的:
(1)依照此規(guī)律,第8個圖形共有__枚五角星.
(2)用代數(shù)式表示第n個圖形共有___枚五角星
(3)第99個圖形共有多少枚五角星?
【答案】(1)25;(2)3n+1;(3)298;
【解析】
(1)根據(jù)圖形可知,每一副圖比前一副圖多3粒星,按此規(guī)律即可求出答案.
(2)根據(jù)圖形可知,每一副圖比前一副圖多3粒星,按此規(guī)律即可求出答案.
(3)根據(jù)圖形可知,每一副圖比前一副圖多3粒星,按此規(guī)律即可求出答案.
由題意可知:
(1)n=1,3×1+1=4;
n=2, 3×2+1=7;
n=3, 3×3+1=10;
n=4, 3×4+1=13;
∴第8個圖形共有25枚;
(2)n=1時,有4枚,
n=2時,有4+3枚,
n=3時,由4+2×3枚,
如此類推,第n個圖共有(3n+1)枚;
(3)當(dāng)n=99時,3n+1=3×99+1=298枚.
故答案為(1)25;(2)3n+1;(3)298;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若將代數(shù)式中的任意兩個字母交換,代數(shù)式不變,則稱這個代數(shù)式為完全對稱式,如就是完全對稱式(代數(shù)式中換成b,b換成,代數(shù)式保持不變).下列三個代數(shù)式:①;②;③.其中是完全對稱式的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=kx+k﹣2經(jīng)過點(m,n+1)和(m+1,2n+3),且﹣2<k<0,則n的取值范圍是( 。
A. ﹣2<n<0B. ﹣4<n<﹣2C. ﹣4<n<0D. 0<n<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E,F在矩形的邊AD,BC上,點B與點D關(guān)于直線EF對稱.設(shè)點A關(guān)于直線EF的對稱點為G.
(1)畫出四邊形ABFE關(guān)于直線EF對稱的圖形;
(2)若∠FDC=16°,直接寫出∠GEF的度數(shù)為 ;
(3)若BC=4,CD=3,寫出求線段EF長的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點,過點D作⊙O的切線交BC于點M,則DM的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠ACB=90°,BC=2,AC=4,點D在射線BC上,以點D為圓心,BD為半徑畫弧交邊AB于點E,過點E作EF⊥AB交邊AC于點F,射線ED交射線AC于點G.
(1)求證:△EFG∽△AEG;
(2)請?zhí)骄烤段AF與FG的倍數(shù)關(guān)系,并證明你的結(jié)論。
(3)設(shè)FG=x,△EFG的面積為y,求y關(guān)于x的函數(shù)解析式,并直接寫出x的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列敘述中,①所有的正數(shù)都是整數(shù);②|a|一定是正數(shù);③無限小數(shù)一定是無理數(shù);④(-2)3沒有平方根;⑤的平方根是±2.其中不正確的個數(shù)有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩列火車分別從A、B兩城同時勻速駛出,甲車開往B城,乙車開往A城.由于墨跡遮蓋,圖中提供的是兩車距B城的路程S甲(千米)、S乙(千米)與行駛時間t(時)的函數(shù)圖象的一部分.
(1)分別求出S甲、S乙與t的函數(shù)關(guān)系式(不必寫出t的取值范圍);
(2)求A、B兩城之間的距離,及t為何值時兩車相遇;
(3)當(dāng)兩車相距300千米時,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com