【題目】對于拋物線.

1)它與x軸交點的坐標(biāo)為 ,與y軸交點的坐標(biāo)為 ,頂點坐標(biāo)為 ;

2)在坐標(biāo)系中利用描點法畫出此拋物線;

x








y








3)利用以上信息解答下列問題:若關(guān)于x的一元二次方程t為實數(shù))在x的范圍內(nèi)有解,則t的取值范圍是

【答案】1)它與x軸交點的坐標(biāo)為1,0),(3,0),

y軸交點的坐標(biāo)為0,3

頂點坐標(biāo)為2,-1;

2

x


0

1

2

3

4


y


3

0

-1

0

3


3關(guān)于x的一元二次方程x2-4x+3-t=0t為實數(shù))在-1x的范圍內(nèi)有解,

∵y=x2-4x+3的頂點坐標(biāo)為(2,-1),

x2-4x+3-t=0有解,方程有兩個根,則:b2-4ac=16-43-t≥0,解得:-1≤t

當(dāng)x=-1,代入x2-4x+3-t=0,t=8,

當(dāng)x=,代入x2-4x+3-t=0t=

∵x-1,∴t8,

∴t的取值范圍是:-1≤t8

【解析】

解:(1)它與x軸交點的坐標(biāo)為,與y軸交點的坐標(biāo)為,頂點坐標(biāo)為………………………………………3

2)列表:

x


0

1

2

3

4


y


3

0

-1

0

3


……………………………4

圖象如圖3所示. ……………………………5

3t的取值范圍是……………………6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE90°,ABAC2,OAC中點,若點D在直線BC上運(yùn)動,連接OE,則在點D運(yùn)動過程中,則OE的最小值是為( 。

A.B.0.25C.1D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).

(1) 請畫出ABC向左平移5個單位長度后得到的ABC;

(2) 請畫出ABC關(guān)于原點對稱的ABC;

(3) 在軸上求作一點P,使PAB的周長最小,請畫出PAB,并直接寫P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(m為常數(shù),m>1,x>0)的圖象經(jīng)過點P(m,1)Q(1,m),直線PQx軸,y軸分別交于C,D兩點,點M(x,y)是該函數(shù)圖象上的一個動點,過點M分別作x軸和y軸的垂線,垂足分別為A,B.

(1)求∠OCD的度數(shù);

(2)當(dāng)m=3,1<x<3時,存在點M使得OPM∽△OCP,求此時點M的坐標(biāo);

(3)當(dāng)m=5時,矩形OAMBOPQ的重疊部分的面積能否等于4.1?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程

(1)若方程有兩個相等的實數(shù)根,求m的值,并求出此時方程的根;

(2)是否存在正數(shù)m,使方程的兩個實數(shù)根的平方和等于224.若存在,求出滿足條件的m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片放入以所在直線為軸,邊上一點為坐標(biāo)原點的平面直角坐標(biāo)系中,連結(jié)。將紙片沿折疊,點恰好落在邊上點處,若,則點的坐標(biāo)為________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2+bx圖象的對稱軸為直線x=1,若關(guān)于x的一元二次方程x2+bx﹣t=0(t為實數(shù))在﹣1≤x≤2的范圍內(nèi)有解,則t的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,斜邊AB=5,而直角邊BC,AC之長是一元二次方程x2-(2m-1)x+4(m-1)=0的兩根,則m的值是(

A. 4 B. -1 C. 4-1 D. -41

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的平分線與的垂直平分線相交于點,,垂足分別為,,,則的長為__________

查看答案和解析>>

同步練習(xí)冊答案