【題目】在△ABC中BC=2,AB=2 ,AC=b,且關(guān)于x的方程x2﹣4x+b=0有兩個相等的實數(shù)根,則AC邊上的中線長為

【答案】2
【解析】解:∵關(guān)于x的方程x2﹣4x+b=0有兩個相等的實數(shù)根, ∴△=16﹣4b=0,
∴AC=b=4,
∵BC=2,AB=2
∴BC2+AB2=AC2 ,
∴△ABC是直角三角形,AC是斜邊,
∴AC邊上的中線長= AC=2;
所以答案是:2.
【考點精析】本題主要考查了求根公式和直角三角形斜邊上的中線的相關(guān)知識點,需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根;直角三角形斜邊上的中線等于斜邊的一半才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠BAC=90°,AD是中線,EAD的中點,過點AAFBCBE的延長線于點F,連接CF.

(1) 求證:AD=AF;

(2) ABC滿足什么條件時,四邊形ADCF是矩形.并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)(﹣1)2016+2sin60°﹣|﹣ |+π0
(2)(x﹣1)2﹣2(x﹣1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正三角形ABC的邊長為1,E,F(xiàn),G分別是AB,BC,CA上的點,且AE=BF=CG,設(shè)△EFG的面積為y,AE的長為x,則y關(guān)于x的函數(shù)的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線 lx 軸, y 軸分別交于 M,N 兩點,且 OM=ON=3.

(1)求這條直線的函數(shù)表達式;

(2)Rt△ ABC 與直線 l 在同一個平面直角坐標系內(nèi),其中∠ABC=90°,AC= 2 ,A(1,0),B(3,0),將△ABC 沿 x 軸向左平移,當點 C 落在直線 l 上時,求線段 AC 掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,RtABC的三個頂點分別是A(-4,2)、B(0,4)、C(0,2),

(1)畫出ABC關(guān)于點C成中心對稱的A1B1C;平移ABC,若點A的對應(yīng)點A2的坐標為(0,-4),畫出平移后對應(yīng)的A2B2C2;

(2)A1B1C和A2B2C2關(guān)于某一點成中心對稱,則對稱中心的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,在平面直角坐標系中,已知點A(a,0)B(b,0),C(2,7),連接 AC,交y軸于 D,且,

1)求點D的坐標.

2)如圖 2y軸上是否存在一點P,使得△ACP的面積與△ABC的面積相等?若存在,求點P的坐標,若不存在,說明理由.

3)如圖 3,若 Q(m,n) x軸上方一點,且的面積為20,試說明:7m3n是否為定值,若為定值,請求出其值,若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.

(1)證明四邊形ADCF是菱形;
(2)若AC=4,AB=5,求菱形ADCF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點DEBC上,連接AD、AE,如果只添加一個條件使∠DAB=∠EAC,則添加的條件不能為( )

A. BD=CE B. AD=AE C. DA=DE D. BE=CD

查看答案和解析>>

同步練習冊答案