【題目】如圖,AB=AC,AB的垂直平分線DEBC延長(zhǎng)線于E,ACF,A=40,AB+BC=6.

(1)BCF的周長(zhǎng)為多少?

(2)E的度數(shù)為多少?

【答案】(1)BCF的周長(zhǎng)為6; (2)E=20.

【解析】

1)由AB的垂直平分線DEBC延長(zhǎng)線于E,交ACF,根據(jù)線段垂直平分線的性質(zhì),可得AFBF,即可得△BCF的周長(zhǎng)為ACBC,然后由ABACABBC6,求得答案;
2)由ABAC,∠A40°,可求得∠ABC的度數(shù),繼而求得答案.

(1)∵DFAB的垂直平分線

∴AF=BF,

∵AB+BC=6,AB=AC

∴△BCF的周長(zhǎng)為:BC+CF+BF=BC+CF+AF=BC+AC=AB+BC=6,

(2)∵AB=AC,∠A=40

∴∠ABC=∠ACB=(18040)=70,

∵AB的垂直平分線DEBC延長(zhǎng)線于E,交ACF,

∴∠BDE=90,

∴∠E=90∠ABC=20.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一張三角形紙片如圖甲,其中將紙片沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)C落到AB邊上的E點(diǎn)處,折痕為如圖乙再將紙片沿過(guò)點(diǎn)E的直線折疊,點(diǎn)A恰好與點(diǎn)D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口P,4小時(shí)后貨船在小島的正東方向,求貨船的航行速度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC 是等邊三角形,點(diǎn) P 在△ABC 內(nèi),PA=2,將△PAB 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn)得到△P1AC,則 P1P 的長(zhǎng)等于( )

A. 2 B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子里共有2個(gè)黃球和3個(gè)白球,每個(gè)球除顏色外都相同,小亮從袋子中任意摸出一個(gè)球,結(jié)果是白球,則下面關(guān)于小亮從袋中摸出白球的概率和頻率的說(shuō)明正確的是( 。

A. 小亮從袋中任意摸出一個(gè)球,摸出白球的概率是1

B. 小亮從袋中任意摸出一個(gè)球,摸出白球的概率是0

C. 在這次實(shí)驗(yàn)中,小亮摸出白球的頻率是1

D. 由這次實(shí)驗(yàn)的頻率去估計(jì)小亮從袋中任意摸出一個(gè)球,摸出白球的概率是1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+cc0)的圖象與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=OC=3,頂點(diǎn)為M

1)求二次函數(shù)的解析式;

2)點(diǎn)P為線段BM上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;

3)探索:線段BM上是否存在點(diǎn)N,使NMC為等腰三角形?如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,B=C=90°DABADC的平分線相交于BC邊上的M點(diǎn),則下列結(jié)論:①∠AMD=90°;MBC的中點(diǎn);AB+CD=AD; ;MAD的距離等于BC的一半;其中正確的有( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CAB的垂直平分線EF上一點(diǎn),連接CA,CB.以BC為直角邊作RtBCD,且CBCD,ADEF于點(diǎn)HBHDC于點(diǎn)M

1)求證:∠HAC=∠HBC=∠HDC;

2)判斷DHB的形狀,并證明你的結(jié)論;

3)若DH1,AH7,則BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來(lái),于是小明用來(lái)表示的小數(shù)部分,你同意小明的表示方法嗎?事實(shí)上,小明的表示方法是有道理,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.又例如:

,即,的整數(shù)部分為2,小數(shù)部分為

請(qǐng)解答:(1)如果的小數(shù)部分為a的整數(shù)部分為b,求的值;

2)已知:,其中x是整數(shù),且0y1

求:①x、y的值;②xy的相反數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案