【題目】一列快車(chē)由甲地開(kāi)往乙地,一列慢車(chē)由乙地開(kāi)往甲地,兩車(chē)同時(shí)出發(fā),勻速運(yùn)動(dòng),快車(chē)離乙地的路程與行駛時(shí)間之間的函數(shù)關(guān)系如圖中線段所示;慢車(chē)離乙地的路程與行駛時(shí)間之間的函數(shù)關(guān)系如圖中線段所示,為線段、的交點(diǎn).
解讀信息:
(1)甲、乙兩地之間的距離為 ;
(2)點(diǎn)D的坐標(biāo)為( ).
問(wèn)題解決:
設(shè)快、慢車(chē)之間的距離為,求與慢車(chē)行駛時(shí)間的函數(shù)關(guān)系式.
【答案】解讀信息:(1)甲、乙兩地之間的距離為450km;(2)點(diǎn)D的坐標(biāo)為(2,150);問(wèn)題解決:當(dāng)0≤x≤2時(shí),;當(dāng)2<x≤3時(shí),;當(dāng)3<x≤6時(shí),
【解析】
(1)直接讀圖可得;
(2)分別求出AB、OC的函數(shù)解析式,聯(lián)立得點(diǎn)D的坐標(biāo);
問(wèn)題解決:分3段考慮,一段是兩車(chē)相遇前,第二段是相遇后至快車(chē)到達(dá)終點(diǎn)前;第三段是快車(chē)已到達(dá)終點(diǎn),慢車(chē)?yán)^續(xù)行駛直至到達(dá)終點(diǎn).
(1)由圖像可得,兩地相距450km
(2)由圖形可得:O(0,0),C(6,450),A(0,450),B(3,0)
可求得直線AB的解析式為:y=-150x+450
OC的解析式為:y=75x
聯(lián)立兩個(gè)方程得:-150x+450=75x
解得:x=2,y=150
∴D(2,150)
問(wèn)題解決:
由AB、OC的解析式可知,快車(chē)的速度為150km/h,慢車(chē)的速度為75km/h
情況一:當(dāng)0≤x≤2時(shí),即快、慢兩車(chē)相向而行
則y=450-(150+75)x,化簡(jiǎn)得:y=-225x+450
情況二:當(dāng)2<x≤3時(shí),即兩車(chē)相遇后,分別繼續(xù)向前行駛
y=(150+75)x-450,化簡(jiǎn)得:y=225x-450
情況三:當(dāng)3<x≤6時(shí),即快車(chē)已到達(dá)終點(diǎn)乙處,慢車(chē)還在繼續(xù)行駛
y=75x
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)(k>0)與一次函數(shù)的圖象相交于兩點(diǎn)A(,),B(,),線段AB交y軸與C,當(dāng)|- |=2且AC = 2BC時(shí),k、b的值分別為( )
A. k=,b=2 B. k=,b=1 C. k=,b= D. k=,b=
【答案】D
【解析】∵AC=2BC,∴A點(diǎn)的橫坐標(biāo)的絕對(duì)值是B點(diǎn)橫坐標(biāo)絕對(duì)值的兩倍.∵點(diǎn)A、點(diǎn)B都在一次函數(shù)y=x+b的圖象上,∴設(shè)B(m, m+b),則A(-2m,-m+b),∵|-|=2,∴m-(-2m)=2,解得m=,又∵點(diǎn)A、點(diǎn)B都在反比例函數(shù)的圖象上,∴(+b)=(-)×(-+b),解得b=,∴k=×(+)=,故選D.
【題型】單選題
【結(jié)束】
11
【題目】若點(diǎn)(4,m)在反比例函數(shù)(x≠0)的圖象上,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】縉云山是國(guó)家級(jí)自然風(fēng)景名勝區(qū),上周周末,小明和媽媽到縉云山游玩,登上了香爐峰觀景塔,從觀景塔底中心處水平向前走米到點(diǎn)處,再沿著坡度為的斜坡走一段距離到達(dá)點(diǎn),此時(shí)回望觀景塔,更顯氣勢(shì)宏偉,在點(diǎn)觀察到觀景塔頂端的仰角為再往前沿水平方向走米到處,觀察到觀景塔頂端的仰角是,則觀景塔的高度為( )(tan22°≈0.4)
A.米B.米C.米D.米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)不僅是一門(mén)學(xué)科,也是一種文化,即數(shù)學(xué)文化.數(shù)學(xué)文化包括數(shù)學(xué)史、數(shù)學(xué)美和數(shù)學(xué)應(yīng)用等多方面.古時(shí)候,在某個(gè)王國(guó)里有一位聰明的大臣,他發(fā)明了國(guó)際象棋,獻(xiàn)給了國(guó)王,國(guó)王從此迷上了下棋,為了對(duì)聰明的大臣表示感謝,國(guó)王答應(yīng)滿足這位大臣的一個(gè)要求.大臣說(shuō):“就在這個(gè)棋盤(pán)上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要這么一點(diǎn)米粒?”國(guó)王哈哈大笑.大臣說(shuō):“就怕您的國(guó)庫(kù)里沒(méi)有這么多米!”國(guó)王的國(guó)庫(kù)里真沒(méi)有這么多米嗎?題中問(wèn)題就是求是多少?請(qǐng)同學(xué)們閱讀以下解答過(guò)程就知道答案了.
設(shè),
則
即:
事實(shí)上,按照這位大臣的要求,放滿一個(gè)棋盤(pán)上的個(gè)格子需要粒米.那么到底多大呢?借助計(jì)算機(jī)中的計(jì)算器進(jìn)行計(jì)算,可知答案是一個(gè)位數(shù): ,這是一個(gè)非常大的數(shù),所以國(guó)王是不能滿足大臣的要求.請(qǐng)用你學(xué)到的方法解決以下問(wèn)題:
我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的倍,則塔的頂層共有多少盞燈?
計(jì)算:
某中學(xué)“數(shù)學(xué)社團(tuán)”開(kāi)發(fā)了一款應(yīng)用軟件,推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問(wèn)題的答案:
已知一列數(shù):,其中第一項(xiàng)是,接下來(lái)的兩項(xiàng)是,再接下來(lái)的三項(xiàng)是,以此類(lèi)推,求滿足如下條件的所有正整數(shù),且這一數(shù)列前項(xiàng)和為的正整數(shù)冪.請(qǐng)直接寫(xiě)出所有滿足條件的軟件激活碼正整數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為4cm,∠A=60°,弧BD是以點(diǎn)A為圓心,AB長(zhǎng)為半徑的弧,弧CD是以點(diǎn)B為圓心,BC長(zhǎng)為半徑的弧,則陰影部分的面積為( 。
A. 2cm2B. 4cm2C. 4cm2D. πcm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點(diǎn),過(guò)點(diǎn)P作y軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明想利用所學(xué)知識(shí)測(cè)量一公園門(mén)前熱氣球直徑的大小,如圖,當(dāng)熱氣球升到某一位置時(shí),小明在點(diǎn)A處測(cè)得熱氣球底部點(diǎn)C、中部點(diǎn)D的仰角分別為50°和60°,已知點(diǎn)O為熱氣球中心,EA⊥AB,OB⊥AB,OB⊥OD,點(diǎn)C在OB上,AB=30m,且點(diǎn)E、A、B、O、D在同一平面內(nèi),根據(jù)以上提供的信息,求熱氣球的直徑約為多少米?(精確到0.1m)
(參考數(shù)據(jù):sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=x+2的圖象分別與坐標(biāo)軸相交于A、B兩點(diǎn)(如圖所示),與反比例函數(shù)(x>0)的圖象相交于C點(diǎn).
(1)寫(xiě)出A、B兩點(diǎn)的坐標(biāo);
(2)作CD⊥x軸,垂足為D,如果OB是△ACD的中位線,求反比例函數(shù)(x>0)的關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com