如圖,在△和△中,,為線段上一點,且
求證:

.

解析試題分析:先證明△∽△,再根據(jù)相似三角形對應邊成比例即可.
證明:∵,

為線段上一點,且,
. 
 .  
=,  
∴△∽△

考點:三角形相似.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

已知:Rt△OAB在直角坐標系中的位置如圖所示,P(3,4)為OB的中點,點C為折線OAB上的動點,線段PC把Rt△OAB分割成兩部分. 問:點C在什么位置時,分割得到的三角形與Rt△OAB相似?(注:在圖上畫出所有符合要求的線段PC,并寫出相應的點C的坐標).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

為了測量校園水平地面上一棵樹的高度,數(shù)學興趣小組利用一根標桿、皮尺,設(shè)計如圖所示的測量方案.已知測量同學眼睛A、標桿頂端F、樹的頂端E在同一直線上,此同學眼睛距地面1.6米,標桿為3.1米,且BC=1米,CD=5米,請你根據(jù)所給出的數(shù)據(jù)求樹高ED.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,□ABCD中,E為BC延長線上一點,AE交CD于點F,若,AD=2,∠B=45°,,求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設(shè)運動的時間為t(s)(),解答下列問題:

(1)當為何值時,PQ∥BC?
(2)設(shè)△AQP的面積為y(),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時刻,使四邊形PQP′C為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB、AC上,這個正方形零件的邊長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在△ABC中,D是BC的中點,且AD=AC,DE⊥BC,與AB相交于點E,EC與AD相交于點F.

(1)求證:△ABC∽△FCD;
(2)若DE=3,BC=8,求△FCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.

(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,

(1)求證:AC2=AB•AD;
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求 的值.

查看答案和解析>>

同步練習冊答案