【題目】如圖,在活動課上,小明和小紅合作用一副三角板來測量學(xué)校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7m,他調(diào)整自己的位置,設(shè)法使得三角板的一條直角邊保持水平,且斜邊與旗桿頂端M在同一條直線上,測得旗桿頂端M仰角為45°;小紅的眼睛與地面的距離(CD)是1.5m,用同樣的方法測得旗桿頂端M的仰角為30°.兩人相距28米且位于旗桿兩側(cè)(點B、N、D在同一條直線上).求出旗桿MN的高度.(參考數(shù)據(jù): ,結(jié)果保留整數(shù).)

【答案】旗桿高約為12米.

【解析】試題分析:過點AAEMNE,過點CCFMNF,則EF=0.2m.由AEM是等腰直角三角形得出AE=ME,設(shè)AE=ME=xm,則MF=(x+0.2)m,FC=(28-x)m.在RtMFC中,由MF=CFtanMCF,解方程求出x的值,則MN=ME+EN

試題解析過點AAEMNE,

過點CCFMNF

EF= =0.2

RtAEM中,

∵∠MAE=45°,AE=ME

設(shè)AE=ME= (不設(shè)參數(shù)也可)

MF= 0.2,CF=28

RtMFC中,∠MFC=90°,MCF=30°

MF=CF·tanMCF

10.0 

MN12

答:旗桿高約為12米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,PCD邊上一點,且APBP分別平分∠DAB、∠CBA,若AD=5,AP=6,則△APB的面積是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點O是直線AB上一點,OC、OD為從點O引出的兩條射線,∠BOD=30°,∠COD=∠AOC.

(1)如圖,求∠AOC的度數(shù);

(2)如圖,在∠AOD的內(nèi)部作∠MON=90°,請直接寫出∠AON∠COM之間的數(shù)量關(guān)系   ;

(3)在(2)的條件下,若OM∠BOC的角平分線,試說明∠AON=∠CON.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為研究學(xué)生的課余活動情況,采取抽樣的方法,從閱讀、運動、娛樂、其它等四個方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查的結(jié)果繪制了如下的兩幅不完整的統(tǒng)計圖(如圖),請你根據(jù)圖中提供的信息解答下列問題:

①這次調(diào)研,一共調(diào)查了 人.

②有閱讀興趣的學(xué)生占被調(diào)查學(xué)生總數(shù)的 %

③有“其它”愛好的學(xué)生共多少人?

④補全折線統(tǒng)計圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+2bx+c(b、c為常數(shù)).

(Ⅰ)當(dāng)b=1,c=﹣3時,求二次函數(shù)在﹣2≤x≤2上的最小值;

(Ⅱ)當(dāng)c=3時,求二次函數(shù)在0≤x≤4上的最小值;

(Ⅲ)當(dāng)c=4b2時,若在自變量x的值滿足2b≤x≤2b+3的情況下,與其對應(yīng)的函數(shù)值y的最小值為21,求此時二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,ABC各頂點的坐標(biāo)分別為:A40),B﹣1,4),C﹣3,1

1)在圖中作A′B′C′使A′B′C′ABC關(guān)于x軸對稱;

2)寫出點A′B′C′的坐標(biāo);

3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形都是由同樣大小的棋子按一定的規(guī)律組成,其中第個圖形有顆棋子,第個圖形一共有顆棋子,第個圖形一共有顆棋子,,則第個圖形中棋子的顆數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一張三角形紙片ABC,∠A80°,∠B70°,DAC邊上一定點,過點D將紙片的一角折疊,使點C落在BC下方C處,折痕DEBC交于點E,當(dāng)AB與∠C的一邊平行時,∠DEC'_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為保護(hù)環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.

(1)求購買A型和B型公交車每輛各需多少萬元?

(2)預(yù)計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?

(3)在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?

查看答案和解析>>

同步練習(xí)冊答案