【題目】如圖,在△ABC中,∠CAB=130°,AB、AC的垂直平分線分別交BC于點(diǎn)M、N,則∠MAN等于( )
A.60°B.70°C.80°D.90°
【答案】C
【解析】
根據(jù)三角形的內(nèi)角和等于180°求出∠B+∠C,根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等,可得:AM=BM,AN=CN,根據(jù)等邊對(duì)等角可得∠BAM=∠B,∠CAN=∠C,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,求出∠AMN+∠ANM,再根據(jù)三角形的內(nèi)角和等于180°,列式計(jì)算即可得解.
解:∵∠CAB=130°,
∴∠B+∠C=180°﹣130°=50°,
∵AB、AC的垂直平分線分別交BC于點(diǎn)M、N,
∴AM=BM,AN=CN,
∴∠BAM=∠B,∠CAN=∠C,
由三角形的外角性質(zhì)得,∠AMN=∠B+∠BAM=2∠B,∠ANM=∠C+∠CAN=2∠C,
所以,∠AMN+∠ANM=2(∠B+∠C)=2×50°=100°,
所以,∠MAN=180°﹣(∠AMN+∠ANM)=180°﹣100°=80°.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為菱形,點(diǎn)為對(duì)角線上的一個(gè)動(dòng)點(diǎn),連接并延長(zhǎng)交射線于點(diǎn),連接.
求證:;
是否存在這樣一個(gè)菱形,當(dāng)時(shí),剛好?若存在,求出的度數(shù);若不存在,請(qǐng)說(shuō)明理由;
若,且當(dāng)為等腰三角形時(shí),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為10的等邊三角形,P是AC邊上一動(dòng)點(diǎn),由A向C運(yùn)動(dòng)(與A、C不重合).
(Ⅰ)如圖1,若點(diǎn)Q是BC邊上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由C向B運(yùn)動(dòng)(與C、B不重合).求證:BP=AQ;
(Ⅱ)如圖2,若Q是CB延長(zhǎng)線上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長(zhǎng)線方向運(yùn)動(dòng)(Q不與B重合),過(guò)P作PE⊥AB于E,連接PQ交AB于D,在運(yùn)動(dòng)過(guò)程中線段ED的長(zhǎng)是否發(fā)生變化?如果不變,求出線段ED的長(zhǎng);如果發(fā)生改變,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是一種折疊式可調(diào)節(jié)的魚(yú)竿支架的示意圖,AE是地插,用來(lái)將支架固定在地面上,支架AB可繞A點(diǎn)前后轉(zhuǎn)動(dòng),用來(lái)調(diào)節(jié)AB與地面的夾角,支架CD可繞AB上定點(diǎn)C前后轉(zhuǎn)動(dòng),用來(lái)調(diào)節(jié)CD與AB的夾角,支架CD帶有伸縮調(diào)節(jié)長(zhǎng)度的伸縮功能,已知BC=60cm.
(1)若支架AB與地面的夾角∠BAF=35°,支架CD與釣魚(yú)竿DB垂直,釣魚(yú)竿DB與地面AF平行,則支架CD的長(zhǎng)度為 cm(精確到0.1cm);(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).
(2)如圖2,保持(1)中支架AB與地面的夾角不變,調(diào)節(jié)支架CD與AB的夾角,使得∠DCB=85°,若要使釣魚(yú)竿DB與地面AF仍然保持平行,則支架CD的長(zhǎng)度應(yīng)該調(diào)節(jié)為多少?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,A、B、C三地依次在一直線上,兩輛汽車(chē)甲、乙分別從A、B兩地同時(shí)出發(fā)駛向C地,如圖②,是兩輛汽車(chē)行駛過(guò)程中到C地的距離s(km)與行駛時(shí)間t(h)的關(guān)系圖象,其中折線段EF﹣FG是甲車(chē)的圖象,線段OM是乙車(chē)的圖象.
(1)圖②中,a的值為 ;點(diǎn)M的坐標(biāo)為 ;
(2)當(dāng)甲車(chē)在乙車(chē)與B地的中點(diǎn)位置時(shí),求行駛的時(shí)間t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A、B均在由面積為1的相同小矩形組成的網(wǎng)格的格點(diǎn)上,建立平面直角坐標(biāo)系如圖所示.若P是x軸上使得的值最大的點(diǎn),Q是y軸上使得QA十QB的值最小的點(diǎn),則= ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是一種折疊式可調(diào)節(jié)的魚(yú)竿支架的示意圖,AE是地插,用來(lái)將支架固定在地面上,支架AB可繞A點(diǎn)前后轉(zhuǎn)動(dòng),用來(lái)調(diào)節(jié)AB與地面的夾角,支架CD可繞AB上定點(diǎn)C前后轉(zhuǎn)動(dòng),用來(lái)調(diào)節(jié)CD與AB的夾角,支架CD帶有伸縮調(diào)節(jié)長(zhǎng)度的伸縮功能,已知BC=60cm.
(1)若支架AB與地面的夾角∠BAF=35°,支架CD與釣魚(yú)竿DB垂直,釣魚(yú)竿DB與地面AF平行,則支架CD的長(zhǎng)度為 cm(精確到0.1cm);(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).
(2)如圖2,保持(1)中支架AB與地面的夾角不變,調(diào)節(jié)支架CD與AB的夾角,使得∠DCB=85°,若要使釣魚(yú)竿DB與地面AF仍然保持平行,則支架CD的長(zhǎng)度應(yīng)該調(diào)節(jié)為多少?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用配方法求出拋物線的頂點(diǎn)坐標(biāo)、對(duì)稱軸、最大值或最小值;若將拋物線先向左平移個(gè)單位,再向上平移個(gè)單位,所得拋物線的函數(shù)關(guān)系式為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2-2x-3的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,連接BC,點(diǎn)D為拋物線的頂點(diǎn),點(diǎn)P是第四象限的拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)D重合).
(1)求∠OBC的度數(shù);
(2)連接CD,BD,DP,延長(zhǎng)DP交x軸正半軸于點(diǎn)E,且S△OCE=S四邊形OCDB,求此時(shí)P點(diǎn)的坐標(biāo);
(3)過(guò)點(diǎn)P作PF⊥x軸交BC于點(diǎn)F,求線段PF長(zhǎng)度的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com