【題目】(1)如圖①,正方形的兩邊分別在正方形的邊和上,連接.填空:線段與的數(shù)量關(guān)系為________;直線與所夾銳角的大小為________.
(2)如圖②,將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,(1)中的結(jié)論是否仍然成立,請(qǐng)說明理由.
(3)把圖②中的正方形都換成菱形,且,如圖③,直接寫出______.
【答案】(1)①,②45°;(2)仍然成立,見解析;(3)
【解析】
(1)根據(jù)正方形的性質(zhì)即可得出答案;
(2)過作,且,連接,,并延長(zhǎng)交、交于點(diǎn),證明,接著證明四邊形是平行四邊形,即可得出答案;
(3)過作∠GDH=120°,且,連接,,證明,接著證明四邊形是平行四邊形,再過點(diǎn)D作DM⊥GH于點(diǎn)M,證出GM=GH=CF,DM=DG,再利用勾股定理計(jì)算即可得出答案.
解:(1)①線段與的數(shù)量關(guān)系為;
②直線與所夾銳角的度數(shù)為45°.
連接AF,根據(jù)正方形的性質(zhì)可得A、F、C三點(diǎn)共線,∠CAD=45°
∵AF=AG,AC=AD
∴CF=AC-AF=(AD-AG)=DG
(2)仍然成立,證明如下:
過作,且,連接,,并延長(zhǎng)交、交于點(diǎn)
∵四邊形是正方形
∴,
∵
∴
∴
∴
在和中,
∴,
∴,
∵四邊形是正方形
∴,,∴
∵,
∴
∴,
,
∴
∴
∴四邊形是平行四邊形
∴,
在中,
∴,
即,
∵
∴,即直線與所夾銳角的度數(shù)為45°;
(3)過作∠GDH=120°,且,連接,
∵四邊形是菱形 ,
∴,∠ADC=120°
∵∠GDH=120°
∴
∴
在和中,
∴,
∴,
∵四邊形是菱形
∴,,
∴
∵,
∴
∴,
,
∴
∴
∴四邊形是平行四邊形
∴,
過點(diǎn)D作DM⊥GH于點(diǎn)M
∴GM=GH=CF,DM=DG
在Rt△DGM中,
∴GM=DG,
∴DG:CF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二孩政策的落實(shí)引起了全社會(huì)的關(guān)注,某校學(xué)生數(shù)學(xué)興趣小組為了了解本校同學(xué)對(duì)父母生育二孩的態(tài)度,在學(xué)校抽取了部分同學(xué)對(duì)父母生育二孩所持的態(tài)度進(jìn)行了問卷調(diào)查,調(diào)查分為非常贊同、贊同、無所謂、不贊同等四種態(tài)度.現(xiàn)將調(diào)查統(tǒng)計(jì)結(jié)果制成了如圖所示的兩幅統(tǒng)計(jì)圖,請(qǐng)結(jié)合這兩幅統(tǒng)計(jì)圖,回答下列問題:
(1)在這次問卷調(diào)查中,一共抽取了 名學(xué)生,a= %;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)持“不贊同”態(tài)度的學(xué)生人數(shù)的百分比所占扇形的圓心角為 °;
(4)若該校有1200名學(xué)生,請(qǐng)你估計(jì)該校學(xué)生對(duì)父母生育二孩持“贊同”和“非常贊同”兩種態(tài)度的人數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8.
(1)求DE的長(zhǎng);
(2)求△ADB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,把二元一次方程的一個(gè)解用一個(gè)點(diǎn)表示出來,例如:可以把它的其中一個(gè)解用點(diǎn)(2,1 )在平面直角坐標(biāo)系中表示出來
探究1:
(1)請(qǐng)你在直角坐標(biāo)系中標(biāo)出4個(gè)以方程的解為坐標(biāo)的點(diǎn),然后過這些點(diǎn)中的任意兩點(diǎn)作直線,你有什么發(fā)現(xiàn),請(qǐng)寫出你的發(fā)現(xiàn) .
在這條直線上任取一點(diǎn),這個(gè)點(diǎn)的坐標(biāo)是方程的解嗎? (填“是”或“不是”___
(2)以方程的解為坐標(biāo)的點(diǎn)的全體叫做方程的圖象.根據(jù)上面的探究想一想:方程的圖象是_ _.
探究2:根據(jù)上述探究結(jié)論,在同-平面直角坐標(biāo)系中畫出二元一次方程組中的兩個(gè)二元一次方程的圖象,由這兩個(gè)二元一次方程的圖象,請(qǐng)你直接寫出二元一次方程組的解,即
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,,點(diǎn)是邊的中點(diǎn),點(diǎn)是邊上一動(dòng)點(diǎn)(不與點(diǎn)重合),延長(zhǎng)交射線于點(diǎn),連接,.
(1)求證:四邊形是平行四邊形;
(2)填空:
①當(dāng)的值為_______時(shí),四邊形是矩形;
②當(dāng)的值為______時(shí),四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某飲料廠開發(fā)了A、B兩種新型飲料,主要原料均為甲和乙,每瓶飲料中甲、乙的含量如下表所示.現(xiàn)用甲原料和乙原料各2800克進(jìn)行試生產(chǎn),計(jì)劃生產(chǎn)A、B兩種飲料共100瓶.設(shè)生產(chǎn)A種飲料x瓶,解析下列問題:
原料名稱 飲料名稱 | 甲 | 乙 |
A | 20克 | 40克 |
B | 30克 | 20克 |
(1)有幾種符合題意的生產(chǎn)方案寫出解析過程;
(2)如果A種飲料每瓶的成本為2.60元,B種飲料每瓶的成本為2.80元,這兩種飲料成本總額為y元,請(qǐng)寫出y與x之間的關(guān)系式,并說明x取何值會(huì)使成本總額最低?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線上有、兩個(gè)觀測(cè)站,在的正東方向,(單位:)有一艘小船在點(diǎn)處,從測(cè)得小船在北偏西的方向,從測(cè)得小船在北偏東的方向.(結(jié)果保留根號(hào))
(1)求點(diǎn)到海岸線的距離;
(2)小船從點(diǎn)處沿射線的方向航行一段時(shí)間后,到達(dá)點(diǎn)處,此時(shí),從測(cè)得小船在北偏西的方向,求點(diǎn)與點(diǎn)之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,BE平分∠ABC,交AD于點(diǎn)E、F是BC上一點(diǎn),且CF=AE,連接DF.
(1)求證:四邊形BEDF是平行四邊形;
(2)若∠ABC=70°,求∠CDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形ABCD是一塊草坪,量得四邊長(zhǎng)AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求這塊草坪的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com