如圖,⊙O中,直徑AB⊥弦CD于E,若AB=26,CD=24,則tan∠OCE=   
 

試題分析:先根據(jù)垂徑定理求得CE的長(zhǎng),再根據(jù)勾股定理求的OE的長(zhǎng),最后根據(jù)銳角三角函數(shù)的定義求解即可.
∵直徑AB⊥弦CD,AB=26,CD=24
∴OC=13,CE=12

∴tan∠OCE=.
點(diǎn)評(píng):勾股定理與垂徑定理的結(jié)合應(yīng)用是初中數(shù)學(xué)的重點(diǎn),是中考中比較常見(jiàn)的知識(shí)點(diǎn),一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知⊙O1與⊙O2兩圓半徑分別為2和6,且圓心距為7,則兩圓的位置關(guān)系是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B的坐標(biāo)為(0,4),⊙D過(guò)A、B、O三點(diǎn),點(diǎn)C為優(yōu)弧ABO上的一點(diǎn)(不與O、A兩點(diǎn)重合),則cosC的值為

A.              B.             C.            D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點(diǎn)D,E是BC的中點(diǎn),連接DE、OE.

(1)判斷DE與⊙O的位置關(guān)系并說(shuō)明理由;    
(2)求證:
(3)若tanC=,DE=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在以O(shè)為圓心的兩個(gè)同心圓中,大圓的弦AB與小圓相切于C點(diǎn),AB=12cm,AO=8cm,則OC長(zhǎng)為(    )cm
A.5B.4C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某街道兩旁正在安裝漂亮的路燈,經(jīng)查看路燈圖紙,小紅發(fā)現(xiàn)該路燈的設(shè)計(jì)可以看作是“相切兩圓”的一部分,部分?jǐn)?shù)據(jù)如圖所示:

⊙O1⊙O2相切于點(diǎn)C,CD切⊙O1于點(diǎn)C,A、B為路燈燈泡.已知∠AO1O2=∠BO2O1=60°. A、B、C三點(diǎn)距地面MN的距離分別為,請(qǐng)根據(jù)以上圖文信息,求:
(1)⊙O1、⊙O2的半徑分別多少cm;
(2)把A、B兩個(gè)燈泡看作兩個(gè)點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:在△ABC中,AB=6,BC=8,AC=10,O為AB邊上的一點(diǎn),以O(shè)為圓心,OA長(zhǎng)為半徑作圓交AC于D點(diǎn),過(guò)D作⊙O的切線交BC于E.

(1)若O為AB的中點(diǎn)(如圖1),則ED與EC的大小關(guān)系為:ED   EC(填“”“”或“”)
(2)若OA<3時(shí)(如圖2),(1)中的關(guān)系是否還成立?為什么?
(3)當(dāng)⊙O過(guò)BC中點(diǎn)時(shí)(如圖3),求CE長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB是⊙O的直徑,弦CD⊥AB,∠CDB=30°, CD=2,則陰影部分圖形的面積為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在⊙O中,AB是直徑,AD是弦,∠ADE=60°,∠C=30°.

(1)判斷直線CD是否為⊙O的切線,請(qǐng)說(shuō)明理由;
(2)若CD="3" ,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案