“x的2倍與y的3倍的差”列式為_(kāi)_____.
x的2倍是2x,y的3倍是3y,則x的2倍與y的3倍的差為:2x-3y.
故答案是:2x-3y.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探索、研究:下圖是按照一定的規(guī)律畫(huà)出的一列“樹(shù)型”圖,下表的n表示“樹(shù)型”圖的序號(hào),an表示第n個(gè)“樹(shù)型”圖中“樹(shù)枝”的個(gè)數(shù).
圖:精英家教網(wǎng)
表:
 n  1
 an  1 15 
(1)根據(jù)“圖”、“表”可以歸納出an關(guān)于n的關(guān)系式為
 

若直線l1經(jīng)過(guò)點(diǎn)(a1,a2)、(a2,a3),求直線l1對(duì)應(yīng)的函數(shù)關(guān)系式,并說(shuō)明對(duì)任意的正整數(shù)n,點(diǎn)(an,an+1)都在直線l1上.
(2)設(shè)直線l2:y=-x+4與x軸相交于點(diǎn)A,與直線l1相交于點(diǎn)M,雙曲線y=
k
x
(x>0)經(jīng)過(guò)點(diǎn)M,且與直線l2相交于另一點(diǎn)N.
①求點(diǎn)N的坐標(biāo),并在如圖所示的直角坐標(biāo)系中畫(huà)出雙曲線及直線l1、l2
②設(shè)H為雙曲線在點(diǎn)M、N之間的部分(不包括點(diǎn)M、N),P為H上一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為t,直線MP與x軸相交于點(diǎn)Q,當(dāng)t為何值時(shí),△MQA的面積等于△PMA的面積的2倍又是否存在t的值,使得△PMA的面積等于1?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
③在y軸上是否存在點(diǎn)G,使得△GMN的周長(zhǎng)最?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果一個(gè)圖形上各點(diǎn)的橫坐標(biāo)保持不變,而縱坐標(biāo)分別都變化為原來(lái)的
1
2
,那么所得的圖形與原圖形相比( 。
A、形狀不變,圖形縮小為原來(lái)的一半
B、形狀不變,圖形放大為原來(lái)的2倍
C、整個(gè)圖形被橫向壓縮為原來(lái)的一半
D、整個(gè)圖形被縱向壓縮為原來(lái)的一半

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、在Rt△ABC中,∠C=90°,∠B=30°,則AB與AC的關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分7分)
如圖,已知拋物線y1=-x2+bx+c經(jīng)過(guò)A(1,0),B(0,-2)兩點(diǎn),頂點(diǎn)為D.

【小題1】(1)求拋物線y1 的解析式;
【小題2】(2)將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°后,得到△AO′ B′ ,將拋物線y1沿對(duì)稱軸平移后經(jīng)過(guò)點(diǎn)B′ ,寫(xiě)出平移后所得的拋物線y2 的解析式;
【小題3】(3)設(shè)(2)的拋物線y2軸的交點(diǎn)為B1,頂點(diǎn)為D1,若點(diǎn)M在拋物線y2上,且滿足△MBB1的面積是△MDD1面積的2倍,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年九年級(jí)第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本小題滿分7分)
如圖,已知拋物線y1=-x2+bx+c經(jīng)過(guò)A(1,0),B(0,-2)兩點(diǎn),頂點(diǎn)為D.

【小題1】(1)求拋物線y1 的解析式;
【小題2】(2)將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°后,得到△AO′ B′ ,將拋物線y1沿對(duì)稱軸平移后經(jīng)過(guò)點(diǎn)B′ ,寫(xiě)出平移后所得的拋物線y2 的解析式;
【小題3】(3)設(shè)(2)的拋物線y2軸的交點(diǎn)為B1,頂點(diǎn)為D1,若點(diǎn)M在拋物線y2上,且滿足△MBB1的面積是△MDD1面積的2倍,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案