【題目】如圖,在△ABC中,AB=AC=10,BC=12,AD=8,AD是BC邊上的高.若P,Q分別是AD和AC上的動(dòng)點(diǎn),則PC+PQ的最小值是( ).
A.6B.8C.9.6D.12
【答案】C
【解析】
由“PC+PQ的最小值”可知本題考查的是兩點(diǎn)之間垂線段最短的知識(shí)點(diǎn),根據(jù)等腰三角形三線合一定理,可以找到PQ的對(duì)稱點(diǎn),從而找到點(diǎn)C到AB的垂線段交AD于點(diǎn)P,從而求出最小值
因?yàn)锳B=AC,AD是BC的高,所以AD是∠BAC的角平分線,以AD為對(duì)稱軸,作Q的對(duì)稱點(diǎn)E,連接CE與AD交于點(diǎn)P,如圖所示:
∵AD是∠BAC的角平分線
∴QP=PE
∴PC+PQ=PC+PE=EC
要使PC+PQ最小,即EC最小,所以CE是△ABC底邊AB上的高的時(shí)候,CE最小
由三角形面積公式得:解得,CE=9.6,∴PC+PQ的最小值是9.6,答案選C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣2m2x+2交y軸于A點(diǎn),交直線x=4于B點(diǎn).
(1)拋物線的對(duì)稱軸為x=_____(用含m的代數(shù)式表示);
(2)若AB∥x軸,求拋物線的表達(dá)式;
(3)記拋物線在A,B之間的部分為圖象G(包含A,B兩點(diǎn)),若對(duì)于圖象G上任意一點(diǎn)P(xp,yp),yp≤2,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,地面上兩個(gè)村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時(shí)的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內(nèi).當(dāng)該飛行器飛行至村莊C的正上方A處時(shí),測(cè)得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時(shí),測(cè)得∠ABD=75°.求村莊C、D間的距離(取1.73,結(jié)果精確到0.1千米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將長(zhǎng)方形紙片ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕EF分別與AB、DC交于點(diǎn)E和點(diǎn)F.
(1)試寫(xiě)出圖中若干相等的線段和銳角(分別寫(xiě)兩對(duì));
(2)證明:△ADF≌△AB′E.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形AOCB的頂點(diǎn)A(m,n)和C(p,q)在坐標(biāo)軸上,已知和都是方程x+2y=4的整數(shù)解,點(diǎn)B在第一象限內(nèi).
(1)求點(diǎn)B的坐標(biāo);
(2)若點(diǎn)P從點(diǎn)A出發(fā)沿y軸負(fù)半軸方向以1個(gè)單位每秒的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿x軸負(fù)半軸方向以2個(gè)單位每秒的速度運(yùn)動(dòng),問(wèn)運(yùn)動(dòng)到多少秒時(shí),四邊形BPOQ面積為長(zhǎng)方形ABCO面積的一半;
(3)如圖2,將線段AC沿x軸正方向平移得到線段BD,點(diǎn)E(a,b)為線段BD上任意一點(diǎn),試問(wèn)a+2b的值是否變化?若變化,求其范圍;若不變化,求其值.(直接寫(xiě)出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=56°,點(diǎn)D為AB中點(diǎn),且OD⊥AB,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合則∠OEC為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,a、b、c是Rt△ABC和Rt△BED邊長(zhǎng),易知AE=c,這時(shí)我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.
請(qǐng)解決下列問(wèn)題:
寫(xiě)出一個(gè)“勾系一元二次方程”;
求證:關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一個(gè)根,且四邊形ACDE的周長(zhǎng)是,求△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=12cm,BC=9cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以3厘米/秒的速度由B向C點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)經(jīng)過(guò)1秒時(shí),△BPD與△CQP是否全等,請(qǐng)判斷并說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD≌△CPQ?
(2)若點(diǎn)Q以②的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC的三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間,點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上會(huì)相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書(shū)店老板去圖書(shū)批發(fā)市場(chǎng)購(gòu)買某種圖書(shū),第一次用1200元購(gòu)書(shū)若干本,并按該書(shū)定價(jià)7元出售,很快售完.由于該書(shū)暢銷,第二次購(gòu)書(shū)時(shí),每本書(shū)的批發(fā)價(jià)已比第一次提高了20%,他用1500元所購(gòu)該書(shū)的數(shù)量比第一次多10本,當(dāng)按定價(jià)售出200本時(shí),出現(xiàn)滯銷,便以定價(jià)的4折售完剩余的書(shū).
(1)第一次購(gòu)書(shū)的進(jìn)價(jià)是多少元?
(2)試問(wèn)該老板這兩次售書(shū)總體上是賠錢了,還是賺錢了(不考慮其他因素)?若賠錢,賠多少;若賺錢,賺多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com