【題目】如圖,己知A(0,8),B(6,0),點M、N分別是線段AB、AO上的動點,點M從點B出發(fā),以每秒2個單位的速度向點A運動,點N從點A出發(fā),以每秒1個單位的速度向點O運動,點M、N中有一個點停止時,另一個點也停止。設(shè)運動時間為t秒。
(1)當t為何值時,M為AB的中點;
(2)當t為何值時,△AMN為直角三角形;
(3)當t為何值時,△AMN是等腰三角形?并求此時點M的坐標.
【答案】(1)當t=秒時,M是AB的中點;(2)當或時,△AMN為直角三角形;
(3)當,, 時,△AMN為等腰三角形,此時,M點的坐標分別是,,.
【解析】
(1)由勾股定理求出AB的長,再由中點的定義即可得出結(jié)論;
(2)運動t秒時,AN=t,BM=2t,AM=10-2t.然后分兩種情況討論:①當MN⊥AO時,△ANM∽△AOB;②當MN⊥AB時,△ANM∽△ABO;
(3)先求出M的坐標,然后分三種情況討論:①AM=AN;②MA=MN;③NA=NM.
(1)∵A(0,8),B(6,0),∴OA=8,OB=6,∴AB=10.
∵M為AB的中點,∴MB=2t=5,∴t=.
答:當t=秒時,M是AB的中點.
(2)運動t秒時,AN=t,BM=2t,AM=10-2t.
①當MN⊥AO時,△ANM∽△AOB,∴,∴,∴t=.
②當MN⊥AB時,△ANM∽△ABO,∴,∴,∴t=.
綜上:當 t=或 t=時,△AMN為直角三角形.
(3)如圖,過M作MC⊥OB于C,MD⊥OA于D.
∵AO⊥OB,∴∠MCB=∠AOB.
∵∠MBC=∠ABO,∴△MBC∽△ABO,∴,∴,∴MC=,CB=,∴OC=,∴M(,).分三種情況討論:
①當AM=AN時,t=102t,解得:,∴M(2,);
②當MA=MN時,過M作MF⊥AO,交AO于F,如圖:
則F是AN的中點,AF=,這時,△AFM∽△AOB,∴,∴ ,解得 ,∴M(,);
③當NA=NM時,過N作NG⊥AB,交AB于G,如圖,則G是AM的中點,AG=5t.
這時,△AGN∽△AOB,∴,∴,解得:,∴M(,).
綜上,當 或或時,△AMN為等腰三角形,此時,M點的坐標分別是.
科目:初中數(shù)學 來源: 題型:
【題目】空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,已知木欄總長為100米.
(1)已知a=20,矩形菜園的一邊靠墻,另三邊一共用了100米木欄,且圍成的矩形菜園面積為450平方米.如圖1,求所利用舊墻AD的長;
(2)已知0<α<50,且空地足夠大,如圖2.請你合理利用舊墻及所給木欄設(shè)計一個方案,使得所圍成的矩形菜園ABCD的面積最大,并求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一塊等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽內(nèi),三個頂點A,B,C分別落在凹槽內(nèi)壁上,已知∠ADE=∠BED=90°,測得AD=5cm,BE=7cm,求該三角形零件的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是邊AC上一點,連BD,給出下列條件:①∠ABD=∠ACB;②AB2=ADAC;③ADBC=ABBD;④ABBC=ACBD.其中單獨能夠判定△ABC∽△ADB的個數(shù)是( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=5米,AC=12米.M點在線段CA上,從C向A運動,速度為1米/秒;同時N點在線段AB上,從A向B運動,速度為2米/秒.運動時間為t秒.
(1)當t為何值時,∠AMN=∠ANM?
(2)當t為何值時,△AMN的面積最大?并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC與BD交于點O.過點C作BD的平行線,過點D作AC的平行線,兩直線相交于點E.
(1)求證:四邊形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王和小張利用如圖所示的轉(zhuǎn)盤做游戲,轉(zhuǎn)盤的盤面被分為面積相等的4個扇形區(qū)域,且分別標有數(shù)字1,2,3,4.游戲規(guī)則如下:兩人各轉(zhuǎn)動轉(zhuǎn)盤一次,分別記錄指針停止時所對應(yīng)的數(shù)字,如兩次的數(shù)字都是奇數(shù),則小王勝;如兩次的數(shù)字都是偶數(shù),則小張勝;如兩次的數(shù)字是奇偶,則為平局.解答下列問題:
(1)小王轉(zhuǎn)動轉(zhuǎn)盤,當轉(zhuǎn)盤指針停止,對應(yīng)盤面數(shù)字為奇數(shù)的概率是多少?
(2)該游戲是否公平?請用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的一元二次方程4x2+4(m﹣1)x+m2=0
(1)當m在什么范圍取值時,方程有兩個實數(shù)根?
(2)設(shè)方程有兩個實數(shù)根x1 , x2 , 問m為何值時,x12+x22=17?
(3)若方程有兩個實數(shù)根x1,x2, 問x1和x2能否同號?若能同號,請求出相應(yīng)m的取值范圍;若不能同號,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖1為一個長方體,AB=AD=16,AE=6,圖2為左圖的表面展開圖,請根據(jù)要求回答問題:
(1)面“學”的對面是面什么?
(2)圖1中,M、N為所在棱的中點,試在圖2中畫出點M、N的位置; 并求出圖2中△ABN的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com