如圖,已知二次函數(shù)y=x2+bx+3的圖象過x軸上點(diǎn)A(1,0)和點(diǎn)B,且與y軸交與點(diǎn)C,頂點(diǎn)為P.
(1)求此二次函數(shù)的解析式及點(diǎn)P的坐標(biāo).
(2)過點(diǎn)C且平行于x軸的直線與二次函數(shù)的圖象交于點(diǎn)D,過點(diǎn)D且垂直于x軸的直線交直線CB與點(diǎn)M,求△BMD的面積.

【答案】分析:(1)直接把點(diǎn)A(1,0)代入二次函數(shù)y=x2+bx+3即可求出b的值,進(jìn)而得出其解析式,由二次函數(shù)的頂點(diǎn)式即可求出其頂點(diǎn)坐標(biāo);
(2)先根據(jù)(1)中二次函數(shù)的解析式求出B、D兩點(diǎn)的坐標(biāo),用待定系數(shù)法求出直線BC的解析式,由此可得出M點(diǎn)的坐標(biāo),根據(jù)S△BMD=S△CDM-S△BMD即可得出結(jié)論.
解答:解:(1)∵二次函數(shù)y=x2+bx+3的圖象過x軸上點(diǎn)A(1,0),
∴1+b+3=0,解得b=-4,
∴此二次函數(shù)的解析式為:y=x2-4x+3,
∵二次函數(shù)y=x2-4x+3可化為y=(x-2)2-1的形式,
∴P(2,-1);

(2)∵由(1)可知,二次函數(shù)的解析式為:y=x2-4x+3,
∴C(0,3),B(3,0)
∵CD∥x軸,
∴C、D兩點(diǎn)縱坐標(biāo)相同,
∴D(4,3),
設(shè)直線BC的解析式為:y=kx+b(k≠0),
解得
∴直線BC的解析式為:y=-x+3,
∵DM⊥x軸,D(4,3)
∴M(4,-1),N(4,0)
∴S△BMD=S△CDM-S△BMD=DM•CD-CD•OC=×(4+1)×4-×4×3=4.
答:△BMD的面積是4.
點(diǎn)評(píng):本題考查的是二次函數(shù)綜合題,涉及到二次函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn)、用待定系數(shù)法求一次函數(shù)的解析式及三角形的面積,難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(
5
2
,
13
4
),B點(diǎn)在y軸上,直線與x軸的交點(diǎn)為F,P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于E點(diǎn).
(1)求k,m的值及這個(gè)二次函數(shù)的解析式;
(2)設(shè)線段PE的長為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱軸的交點(diǎn),在線段AB上是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的精英家教網(wǎng)三角形與△BOF相似?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(3,0)兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.
(1)求此二次函數(shù)的解析式,并寫出它的對(duì)稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點(diǎn)的三角形與△BAC相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B在y軸上.點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過點(diǎn)P作x軸的垂線與該二次函數(shù)的圖象交于點(diǎn)E.
(1)求b的值及這個(gè)二次函數(shù)的關(guān)系式;
(2)設(shè)線段PE的長為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若點(diǎn)D為直線AB與該二次函數(shù)的圖象對(duì)稱軸的交點(diǎn),則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);如果不能,請(qǐng)說明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標(biāo)軸交于點(diǎn)A(-1,0)和點(diǎn)C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個(gè)交點(diǎn)B的坐標(biāo).
(2)在上面所求二次函數(shù)的對(duì)稱軸上存在一點(diǎn)P(2,-2),連接OP,找出x軸上所有點(diǎn)M的坐標(biāo),使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過A(2,0)、B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對(duì)稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點(diǎn)為D,在y軸上是否存在一點(diǎn)P,使得△PAD的周長最小?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案