【題目】如圖,在△ABC中,AB8cmBC16cm,點P從點A開始沿邊AB向點B2cm/s的速度移動,點Q從點B開始沿邊BC向點C4cm/s的速度移動,如果點P、Q分別從點A、B同時出發(fā),經(jīng)幾秒鐘△PBQ與△ABC相似?試說明理由.

【答案】經(jīng)20.8秒鐘△PBQ與△ABC相似.

【解析】

首先設經(jīng)x秒鐘PBQABC相似,由題意可得AP2xcm,BQ4xcm,BPABAP=(82xcm,又由∠B是公共角,分別從分析,即可求得答案.

解:設經(jīng)x秒鐘PBQABC相似,

AP2xcm,BQ4xcm,

AB8cm,BC16cm,

BPABAP=(82xcm,

∵∠B是公共角,

∵①當,即時,PBQ∽△ABC,

解得:x2;

②當,即時,QBP∽△ABC,

解得:x0.8,

∴經(jīng)20.8秒鐘PBQABC相似.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A0,2),點Px軸上一動點,將線段AP繞點A逆時針旋轉(zhuǎn)90°,得到線段AQ,當點P從點(30)運動到點(1,0)時,點Q運動的路徑長為____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,EF,EB⊙O的弦,且EF=EB,EFAB交于點C,連接OF,若∠AOF=40°,則∠F的度數(shù)是(

A.20°B.35°C.40°D.55°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C為線段BD上的一點,△ABC和△CDE是等邊三角形.

1)求證:AD=BE.

2)以點C為中心,將△CDE逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為ɑ(0°ɑ360°).

①當ɑ為多少時DEAB?直接寫出結(jié)果,不要求證明.

②當BC=6, CD=4 ,設點E到直線AB的距離為y, ɑ為多少時,點E到直線AB的距離最小?求出最小值,并簡潔說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠ABC=90°,∠BAC30°,將ABC繞點A順時針旋轉(zhuǎn)一定的角度得到AED,點BC的對應點分別是ED.

(1)如圖1,當點E恰好在AC上時,求∠CDE的度數(shù);

(2)如圖2,若=60°時,點F是邊AC中點,求證:四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了豐富校園文化生活,提高學生的綜合素質(zhì),促進中學生全面發(fā)展,學校開展了多種社團活動.小明喜歡的社團有:合唱社團、足球社團、書法社團、科技社團(分別用字母A,BC,D依次表示這四個社團),并把這四個字母分別寫在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.

1)小明從中隨機抽取一張卡片是足球社團B的概率是   

2)小明先從中隨機抽取一張卡片,記錄下卡片上的字母后不放回,再從剩余的卡片中隨機抽取一張卡片,記錄下卡片上的字母.請你用列表法或畫樹狀圖法求出小明兩次抽取的卡片中有一張是科技社團D的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是邊長為的正方形ABCD的對角線BD上的動點,過點P分別作PEBC于點E,PFDC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EFAH于點G,當點PBD上運動時(不包括B、D兩點),以下結(jié)論中:①MF=MC;AHEF;AP2=PMPH;EF的最小值是.其中正確結(jié)論是( 。

A. ①③ B. ②③ C. ②③④ D. ②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y1=3x5與反比例函數(shù)y2=的圖象相交A2,m),Bn,﹣6)兩點,連接OA,OB

1)求kn的值;

2)求AOB的面積;

3)直接寫出y1 y2時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,上一點,過點的弦,設

1)若時,求、的度數(shù)各是多少?

2)當時,是否存在正實數(shù),使弦最短?如果存在,求出的值,如果不存在,說明理由;

3)在(1)的條件下,且,求弦的長.

查看答案和解析>>

同步練習冊答案