【題目】7張如圖1的長為a,寬為b(a>b)的小長方形紙片,按圖2的方式不重疊地放在長方形ABCD內(nèi),未被覆蓋的部分(兩個長方形)用陰影表示.當(dāng)BC的長度變化時,按照同樣的放置方式,左上角與右下角的陰影部分的面積的差S始終保持不變,則a,b滿足的關(guān)系是________________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點(diǎn)D,點(diǎn)P是BA延長線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OP=OC,
(1)求∠APO+∠DCO的度數(shù);
(2)求證:點(diǎn)P在OC的垂直平分線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若所求的二次函數(shù)圖象與拋物線y=2x2-4x-1有相同的頂點(diǎn),并且在對稱軸的左側(cè),y隨x的增大而增大,在對稱軸的右側(cè),y隨x的增大而減小,則所求二次函數(shù)的表達(dá)式為( )
A. y=-x2+2x+4 B. y=-ax2-2ax-3(a>0)
C. y=-2x2-4x-5 D. y=ax2-2ax+a-3(a<0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司銷售某一種新型通訊產(chǎn)品,已知每件產(chǎn)品的進(jìn)價為4萬元,每月銷售該種產(chǎn)品的總開支(不含進(jìn)價)總計11萬元.在銷售過程中發(fā)現(xiàn),月銷售量夕(件)與銷售單價x (萬元)之間存在著如圖所示的一次函數(shù)關(guān)系、
(1)求y關(guān)于x的函數(shù)關(guān)系式(直接寫出結(jié)果)
(2)試寫出該公司銷售該種產(chǎn)品的月獲利z(萬元)關(guān)于銷售單價x(萬元)的函數(shù)關(guān)系式、當(dāng)銷售單價x為何值時,月獲利最大?并求這個最大值(月獲利一月銷售額一月銷售產(chǎn)品總進(jìn)價一月總開支)
(3)若公司希望該產(chǎn)品一個月的銷售獲利不低于5萬元,借助(2)中函數(shù)的圖象,請你幫助該公司確定銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,你認(rèn)為銷售單價應(yīng)定為多少萬元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進(jìn)價的50%標(biāo)價.已知按標(biāo)價九折銷售該型號自行車8輛與將標(biāo)價直降100元銷售7輛獲利相同.
(1)求該型號自行車的進(jìn)價和標(biāo)價分別是多少元?
(2)若該型號自行車的進(jìn)價不變,按(1)中的標(biāo)價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個全等的含30°,60°角的三角板ADE和三角板ABC如圖所示放置,E,A,C三點(diǎn)在一條直線上,連接BD,取BD的中點(diǎn)M,連接ME,MC.試判斷△EMC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A、B的坐標(biāo)分別為(0,2)、(1,0),頂點(diǎn)C在函數(shù)y=x2+bx-1的圖象上,將正方形ABCD沿x軸正方向平移后得到正方形A′B′C′D′,點(diǎn)D的對應(yīng)點(diǎn)D′落在拋物線上,則點(diǎn)D與其對應(yīng)點(diǎn)D′之間的距離為 ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是放在地面上的一個長方體盒子,其中AB=18cm,BC=12cm,BF=10cm,點(diǎn)M在棱AB上,且AM=6cm,點(diǎn)N是FG的中點(diǎn),一只螞蟻要沿著長方體盒子的表面從點(diǎn)M爬行到點(diǎn)N,它需要爬行的最短路程為( )
A.20cmB.2cmC.(12+2)cmD.18cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b,c是△ABC的三條邊,關(guān)于x的方程x2+x+c-a=0有兩個相等的實(shí)數(shù)根,方程3cx+2b=2a的根為x=0.
(1)試判斷△ABC的形狀;
(2)若a,b為方程x2+mx-3m=0的兩個根,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com