【題目】(1)如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點.且∠EAF=60°.探究圖中線段BE,EF,FD之間的數(shù)量關(guān)系并證明. (提示:延長CD到G,使得DG=BE)
(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F分別是BC,CD上的點,且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由;
(3)如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西20°的A處,艦艇乙在指揮中心南偏東60°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時的速度前進(jìn).1小時后,指揮中心觀測到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離.(可利用(2)的結(jié)論)
【答案】(1)EF=BE+DF;(2)EF=BE+DF仍然成立;(3)此時兩艦艇之間的距離是140海里.
【解析】
(1)根據(jù)全等三角形對應(yīng)邊相等解答;
(2)延長FD到G,使DG=BE,連接AG,根據(jù)同角的補角相等求出∠B=∠ADG,然后利用“邊角邊”證明△ABE和△ADG全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=AG,∠BAE=∠DAG,再求出∠EAF=∠GAF,然后利用“邊角邊”證明△AEF和△AGF全等,根據(jù)全等三角形對應(yīng)邊相等可得EF=GF,然后求解即可;
(3)連接EF,延長AE、BF相交于點C,然后求出∠EAF=∠AOB,判斷出符合探索延伸的條件,再根據(jù)探索延伸的結(jié)論解答即可.
解:(1)EF=BE+DF;
證明:如圖1,延長FD到G,使DG=BE,連接AG,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
(2)EF=BE+DF仍然成立.
證明:如圖2,延長FD到G,使DG=BE,連接AG,
∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,
∴∠B=∠ADG,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
(3)如圖3,連接EF,延長AE、BF相交于點C,
∵∠AOB=20°+90°+(90°﹣60°)=140°,
∠EOF=70°,
∴∠EOF=∠AOB,
又∵OA=OB,
∠OAC+∠OBC=(90°﹣20°)+(60°+50°)=180°,
∴符合探索延伸中的條件,
∴結(jié)論EF=AE+BF成立,
即EF=1×(60+80)=140(海里).
答:此時兩艦艇之間的距離是140海里.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC中,分別延長邊AB,BC,CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC的面積為1,則△DEF的面積為( )
A. 12B. 14C. 16D. 18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小明乘坐家門口的公交車到和平公園游玩,他先乘坐公交車0.8小時后達(dá)到書城,逗留一段時間后繼續(xù)坐公交車到和平公園,小明出發(fā)一段時間后,小明的媽媽不放心,于是駕車沿相同的路線前往和平公園,如圖是他們離家的路程與離家時間的關(guān)系圖,請根據(jù)圖回答下列問題:
(1)小明家到和平公園的路程為 ,他在書城逗留的時間為 ;
(2)圖中點表示的意義是 ;
(3)求小明的媽媽駕車的平均速度(平均速度=).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AE平分∠BAF,交⊙O于點E,過點E作直線ED⊥AF,交AF的延長線于點D,交AB的延長線于點C.
(1)求證:CD是⊙O的切線;
(2)若tanC= ,⊙O的半徑為2,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上,老師準(zhǔn)備了若干個如圖1的三種紙片,A種紙片是邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片是寬為a,長為b的長方形。用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形。
(1)請用兩種不同的方式表示圖2大正方形的面積。
方式1: ;
方式2: .
(2)觀察圖2,請你寫出下列三個代數(shù)式:,,之間的等量關(guān)系。
(3)類似地,請你用圖1中的三種紙片拼一個圖形驗證:
(4)根據(jù)(2)題中的等量關(guān)系,解決如下問題:
①已知:,,求的值;
②已知,求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,設(shè)△ABC的面積為S,周長為l.
(1)填表:
三邊a、b、c | ||
3、4、5 | 2 | |
5、12、13 | 4 | |
8、15、17 | 6 |
(2)如果,觀察上表猜想: (用含有m的代數(shù)式表示).
(3)證明(2)中的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點A(2,0)同時出發(fā),沿長方形BCDE的邊作環(huán)繞運動.物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2017次相遇地點的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABC是等邊三角形,點D是線段AC上的一動點,E在BC的延長線上,且BD=DE.
(1)如圖,若點D為線段AC的中點,求證:AD=CE;
(2)如圖,若點D為線段AC上任意一點,求證:AD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“轉(zhuǎn)化”是數(shù)學(xué)中的一種重要思想,即把陌生的問題轉(zhuǎn)化成熟悉的問題,把復(fù)雜的問題轉(zhuǎn)化成簡單的問題,把抽象的問題轉(zhuǎn)化為具體的問題.
(1)請你根據(jù)已經(jīng)學(xué)過的知識求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數(shù);
(2)若對圖(1)中星形截去一個角,如圖(2),請你求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);
(3)若再對圖(2)中的角進(jìn)一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數(shù)嗎?只要寫出結(jié)論,不需要寫出解題過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com