【題目】如圖,在等腰梯形 ABCD 中,AD∥BC,AB=CD.點(diǎn) P 為底邊 BC 的延長(zhǎng)線上任意一點(diǎn),PE⊥AB 于 E,PF⊥DC 于 F,BM⊥DC 于 M.請(qǐng)你探究線段 PE、PF、BM 之間的數(shù)量關(guān)系:
______.
【答案】PE-PF=BM.
【解析】
過(guò)點(diǎn)B作BH∥CD,交PF的延長(zhǎng)線于點(diǎn)H,易證四邊形BMFH是平行四邊形,于是有FH=BM,再用AAS證明△PBE≌△PBH,可得PH=PE,繼而得到結(jié)論.
解:PE-PF=BM. 理由如下:
過(guò)點(diǎn)B作BH∥CD,交PF的延長(zhǎng)線于點(diǎn)H,如圖
∴∠PBH=∠DCB,
∵PF⊥CD,BM⊥CD,
∴BM∥FH,PH⊥BH,
∴四邊形BMFH是平行四邊形,∠H=90°,
∴FH=BM,
∵等腰梯形ABCD中,AD∥BC,AB=DC,
∴∠ABC=∠DCB,
∴∠ABC=∠PBH,
∵PE⊥AB,
∴∠PEB=∠H=90°,又PB為公共邊,
∴△PBE≌△PBH(AAS),
∴PH=PE,
∴PE=PF+FH=PF+BM.
即PE-PF=BM.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有筐白菜,以每筐千克為標(biāo)準(zhǔn),超過(guò)或不足的分別用正、負(fù)來(lái)表示,記錄如下:
與標(biāo)準(zhǔn)質(zhì)量的差單位:千克 | ||||||
筐 數(shù) |
(1)與標(biāo)準(zhǔn)質(zhì)量比較,筐白菜總計(jì)超過(guò)或不足多少千克?
(2)若白菜每千克售價(jià)元,則出售這筐白菜可賣多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線段AD上一點(diǎn),點(diǎn)B為CD的中點(diǎn),且AD=8cm,BD=1cm
(1)求AC的長(zhǎng)
(2)若點(diǎn)E在直線AD上,且EA=2cm,求BE的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)開(kāi)展以“我最喜歡的職業(yè)”為主題的調(diào)查活動(dòng),通過(guò)對(duì)學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制的不完整統(tǒng)計(jì)圖.
(1)求出被調(diào)查的學(xué)生人數(shù);
(2)計(jì)算并將折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)計(jì)算扇形統(tǒng)計(jì)圖中公務(wù)員部分對(duì)應(yīng)的圓心角的度數(shù);
(4)若從被調(diào)查的學(xué)生中任抽一名,求抽取的這名學(xué)生最喜歡的職業(yè)是“教師”的百分比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在解決數(shù)學(xué)問(wèn)題的過(guò)程中,我們常用到“分類討論”的數(shù)學(xué)思想,下面是運(yùn)用分類討論的數(shù)學(xué)思想解決問(wèn)題的過(guò)程,請(qǐng)仔細(xì)閱讀,并解答題目后提出的“探究”.
(提出問(wèn)題)三個(gè)有理數(shù)a,b,c,滿足,求的值.
(解決問(wèn)題).
解:由題意得,a,b,c三個(gè)有理數(shù)都為正數(shù)或其中一個(gè)為正數(shù),另兩個(gè)為負(fù)數(shù).
①當(dāng)a,b,c都是正數(shù),即,,時(shí),則(備注:一個(gè)非零數(shù)除以它本身等于1,如,則,)
②當(dāng)a,b,c有一個(gè)為正數(shù),另兩個(gè)為負(fù)數(shù)時(shí),設(shè),,,
則.
(備注:一個(gè)非零數(shù)除以它的相反數(shù)等于-1,如:,則).
所以的值為3或一1.
(探究)請(qǐng)根據(jù)上面的解題思路解答下面的問(wèn)題:
(1)三個(gè)有理數(shù)a,b,c滿足,求的值;
(2)已知,,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀以下證明過(guò)程:
已知:在△ABC中,∠C≠90°,設(shè)AB=c,AC=b,BC=a.求證:a2+b2≠c2.
證明:假設(shè)a2+b2=c2,則由勾股定理逆定理可知∠C=90°,這與已知中的∠C≠90°矛盾,故假設(shè)不成立,所以a2+b2≠c2.
請(qǐng)用類似的方法證明以下問(wèn)題:
已知:關(guān)于x的一元二次方程x2﹣(m+1)x+2m-3=0 有兩個(gè)實(shí)根x1和x2.
求證:x1≠x2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖中的虛線網(wǎng)格我們稱為正三角形網(wǎng)格,它的每一個(gè)小三角形都是邊長(zhǎng)為 1個(gè)單位長(zhǎng)度的正三角形,這樣的三角形稱為單位正三角形.
(1)圖①中,已知四邊形 ABCD 是平行四邊形,求△ABC 的面積和對(duì)角線 AC 的長(zhǎng);
(2)圖②中,求四邊形 EFGH 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班將買一些乒乓球和乒乓球拍,現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍.乒乓球拍每副定價(jià)30元,乒乓球每盒定價(jià)5元,經(jīng)洽談后,甲店每買一副球拍贈(zèng)一盒乒乓球,乙店全部按定價(jià)的9折優(yōu)惠.該班需球拍5副,乒乓球若干盒(不小于5盒).請(qǐng)解答下列問(wèn)題:
(1)如果購(gòu)買乒乓球(不小于5)盒,則在甲店購(gòu)買需付款 元,在乙店購(gòu)買需付款 元。(用的代數(shù)式表示)
(2)當(dāng)購(gòu)買乒乓球多少盒時(shí),在兩店購(gòu)買付款一樣?
(3)如果給你450元,讓你選擇一家商店去辦這件事,你打算去哪家商店購(gòu)買?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初三(1)班部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),收集整理數(shù)據(jù)后,老師將減壓方式分為五類,并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.
(1)初三(1)班接受調(diào)查的同學(xué)共有多少名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的“體育活動(dòng)C”所對(duì)應(yīng)的圓心角度數(shù);
(3)若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生;老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,直接寫(xiě)出選取的兩名同學(xué)都是女生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com